SISTEM PREDIKSI KEPRIBADIAN MANUSIA BERDASARKAN STATUS MEDIA SOSIAL MENGGUNAKAN SUPPORT VECTOR MACHINE

Elsen Ronando, Muhammad Yasa, Enny Indasyah

Abstract


Currently, social media is a forum for exchanging information widely used by the public, such as Facebook and Twitter. Social media users exchange information to find out the condition of one another. Some companies use social media to explore the personality potential of prospective employees to be recruited. However, to dig up this information takes a very long time because the company has to open prospective employees' social media one by one. To dig up information automatically, a personality detection system is needed from social media users. This study develops a person's personality prediction system based on social media status using the support vector machine. The data sets evaluated in this study were 300 Facebook social media status data and 2067 Twitter social media status data. Based on the evaluation results, we obtained a high level of accuracy in detecting a person's personality based on social media status, namely 100% for Facebook user status and 99.3% for Twitter user status.

Keywords: Personality, Social Media, Support Vector Machine, Facebook, Twitter

 

ABSTRAK

Saat ini, media sosial merupakan salah suatu wadah pertukaran informasi yang banyak digunakan oleh masyarakat, seperti Facebook maupun Twitter. Pengguna media sosial saling bertukar informasi untuk mengetahui kondisi satu dengan lainnya. Beberapa perusahaan memanfaatkan media sosial untuk menggali potensi kepribadian dari calon pegawai yang akan direkrut. Namun, untuk menggali informasi tersebut memerlukan waktu yang sangat lama karena perusahan harus membuka media sosial dari calon pegawai satu per satu. Agar dapat menggali informasi secara otomatis, maka diperlukan sistem deteksi kepribadian dari pengguna media sosial. Penelitian ini mengembangkan sistem prediksi kepribadian seseorang berdasarkan status media sosial menggunakan metode Support Vector Machine. Set data yang dievaluasi dalam penelitian ini yaitu 300 data status media sosial Facebook dan 2067 data status media sosial Twitter. Berdasarkan hasil evaluasi yang dilakukan diperoleh tingkat akurasi yang tinggi dalam mendeteksi kepribadian seseorang berdasarkan status media sosial, yaitu 100% untuk status pengguna Facebook dan 99,3% untuk status pengguna Twitter.  

Kata Kunci: Kepribadian, Media Sosial, Support Vector Machine, Facebook,  Twitter.


Keywords


Personality; Social Media; Support Vector Machine; Facebook; Twitter

Full Text:

PDF

References


T. A. D. Permana, F. Sholihin, and F. Hastarita, “Klasifikasi Emosi Teks Berbahasa Indonesia Menggunakan Metode Maximum Entropy,” Konvergensi, vol. 13, no. 2, pp. 68–75, 2017.

F. N. Rozi and D. H. Sulistyawati, “Klasifikasi Berita Hoax Pilpres Menggunakan Metode Modified K-Nearest Neighbor Dan Pembobotan Menggunakan Tf-Idf,” Konvergensi, vol. 15, no. 1, pp. 1–10, 2019.

D. Markovikj, S. Gievska, M. Kosinski, and D. Stillwell, “Mining facebook data for predictive personality modeling,” AAAI Workshop - Technical Report, vol. WS-13-01, pp. 23–26, 2013.

A. Ortigosa, R. M. Carro, and J. I. Quiroga, “Predicting user personality by mining social interactions in Facebook,” Journal of Computer and System Sciences, vol. 80, no. 1, pp. 57–71, 2014.

C. Limantara and D. Nababan, “Klasifikasi Kepribadian Menggunakan Algoritma Decision Tree Berdasarkan Ten Item Personality Inventory,” Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi, vol. 5, no. 1, pp. 8–12, 2019.

E. Yuliani, E. Utami, and S. Raharjo, “Klasifikasi Kepribadian Pengguna Media Sosial,” Jurnal Informa, vol. 6, no. 1, pp. 15–19, 2020.

A. S. R. Sinaga, “Machine Learning Prediksi Karakter Pengguna Hastag (#) Bahasa Generasi Milenial Di Sosial Media,” Indonesian Journal of Applied Informatics, vol. 4, no. 2, pp. 165–171, 2020.

D. Lhaksmana, KM; Nhita, Fhira & Anggraini, “Klasifikasi Kepribadian Berdasarkan Status Facebook Menggunakan Metode Backpropagation,” e-Proceeding of Engineering, vol. 4, no. 3, pp. 5174–5183, 2017.

Y. B. N. D. Artissa, I. Asror, and S. A. Faraby, “Personality Classification based on Facebook status text using Multinomial Naïve Bayes method,” Journal of Physics: Conference Series, vol. 1192, no. 1, 2019.

A. Fikriani, I. Asror, and Y. R. Murti, “Klasifikasi Kepribadian Berdasarkan Data Twitter dengan Menggunakan Metode Support Vector Machine,” e-Proceeding of Engineering, vol. 6, no. 3, pp. 10436–10450, 2019.

E. Ronando, M. I. Irawan, and E. Apriliani, “A Hybrid Approach Support Vector Machine (SVM) - Neuro Fuzzy For Fast Data Classification,” IPTEK Journal of Proceeding Series, vol. 1, pp. 105–106, 2015.

J. W. Pennebaker, R. L. Boyd, K. Jordan, and K. Blackburn, “The Development and Psychometric Properties of LIWC2015,” Austin, TX:University of Texas at Austin, 2015.

R. L. Boyd, “Data Analytics in Digital Humanities,” in Hai-Jew S. (eds) Data Analytics in Digital Humanities. Multimedia Systems and Applications, Springer, Cham, 2017, pp. 161–189.

E. Ronando and Sugiono, “Sistem Konversi Ucapan Kata Ke Teks Menggunakan Support Vector Machine: Speech Word Recognition To Text Converter Using …,” Jurnal Teknologi dan Terapan Bisnis, vol. 2, no. 2, pp. 1–8, 2019.

S. A. Catanese, P. De Meo, E. Ferrara, G. Fiumara, and A. Provetti, “Crawling Facebook for social network analysis purposes,” in WIMS ’11: International Conference on Web Intelligence, Mining, 2011.

A. Hernandez-Suarez, G. Sanchez-Perez, K. Toscano-Medina, V. Martinez-Hernandez, V. Sanchez, and H. Perez-Meana, “A Web Scraping Methodology for Bypassing Twitter API Restrictions,” arXiv e-prints, pp. 1–7, 2018.

A. Gholamy, V. Kreinovich, and O. Kosheleva, “Why 70/30 or 80/20 Relation Between Training and Testing Sets : A Pedagogical Explanation,” 2018.




DOI: https://doi.org/10.30996/konv.v17i1.5164

DOI (PDF): https://doi.org/10.30996/konv.v17i1.5164.g3915

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Elsen Ronando, Muhammad Yasa, Enny Indasyah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats