PENGENALAN KARAKTER BRAILLE MEMANFAATKAN CONVOLUTIONAL NEURAL NETWORK

  • Marindo Andriansyah Institut Sains dan Teknologi Terpadu Surabaya
  • Hartarto Junaedi Institut Sains dan Teknologi Terpadu Surabaya
Keywords: Braille, CNN, Pengenalan Karakter

Abstract

ABSTRACT
Braille is a character designed for the blind. Braille letters consist of six raised dots arranged in three rows and two columns. Braille is read by touch, so finger sensitivity is very important. Braille combinations need to be memorized, making them very difficult to learn. This study discusses the introduction of braille characters using the Convolutional Neural Network (CNN) method. CNN will process 3 data sets, 60, 100, and 150 data with each data using 5, 10, 25, and 50 epochs. The highest accuracy value in the training process is 99.87% with a loss value of 0.232. In the recognition process, the highest accuracy is 99.62% with a recognition error of 1 image out of 260 images.

Keywords: Braille, CNN, Character, Recognition.

 

ABSTRAK
Huruf braille merupakan karakter yang dirancang untuk orang buta. Huruf braille terdiri dari enam titik timbul yang tersusun dalam tiga baris dan dua kolom. Huruf braille dibaca dengan menggunakan sentuhan, oleh sebab itu sensifitas jari sangat penting. Kombinasi huruf braille perlu dihafalkan, sehingga sangat sulit untuk dipelajari. Penelitian ini membahas pengenalan karakter braille dengan menggunakan metode Convolutional Neural Network (CNN). CNN akan memproses 3 kelompok data, 60, 100, dan 150 data dengan masing-masing data menggunakan 5, 10, 25, dan 50 epoch. Nilai akurasi tertinggi pada proses traning sebesar 99.87% dengan nilai loss sebesar 0.232. Dalam proses pengenalan akurasi tertinggi sebesar 99.62% dengan kesalahan pengenalan 1 gambar dari 260 gambar.

Kata Kunci: Braille, CNN, Karakter, Pengenalan.

References

J. Subur, T. A. Sardjono, and R. Mardiyanto, “Braille character recognition using find contour method,” Proceedings - 5th International Conference on Electrical Engineering and Informatics: Bridging the Knowledge between Academic, Industry, and Community, ICEEI 2015, pp. 699–703, 2015.

J. Mennens, L. van Tichelen, G. François, and J. J. Engelen, “Optical Recognition of Braille Writing Using Standard Equipment,” IEEE Transactions on Rehabilitation Engineering, vol. 2, no. 4, pp. 207–212, 1994.

M. Hanumanthappa and V. V. Murthy, “Optical Braille recognition and its correspondence in the conversion of Braille script to text - A literature review,” 2016 International Conference on Computation System and Information Technology for Sustainable Solutions, CSITSS 2016, pp. 297–301, 2016.

K. Smelyakov, A. Chupryna, D. Yeremenko, A. Sakhon, and V. Polezhai, “Braille Character Recognition Based on Neural Networks,” Proceedings of the 2018 IEEE 2nd International Conference on Data Stream Mining and Processing, DSMP 2018, pp. 509–513, 2018.

R. Indah Purwatiningsih, “Program studi teknik informatika fakultas teknik universitas bengkulu 2014,” pp. 1–14, 2014.

N. D. S. M. K. De Silva and S. Vasanthapriyan, “Optical braille recognition platform for Sinhala,” 18th International Conference on Advances in ICT for Emerging Regions, ICTer 2018 - Proceedings, pp. 7–12, 2019.

W. K. I. L. I. Perera, T. D. S. H., & Wanniarachchi, “Optical Braille Recognition Based on Histogram of Oriented Gradient Features and Support-Vector Machine,” International Journal of Engineering Science, vol. 8, no. 10, pp. 19192–19195, 2018.

E. Arias-Castro and D. L. Donoho, “Does median filtering truly preserve edges better than linear filtering?,” Annals of Statistics, vol. 37, no. 3, pp. 1172–1206, 2009.

F. A. Hermawati and Tigor, “Perbaikan Efek Ketidakseragaman Pada Citra Dengan Histogram Statistik,” Konvergensi, vol. 11, no. 2, pp. 1–11, 2015.

Dwi Harini Sulistyawati and H. S. Utomo, “Perbaikan Citra Dengan Noise Missing Block Menggunakan Implementasi Algoritma Projection Onto Convex Sets (POCS),” Konvergensi, vol. 12, no. 2, pp. 11–19, 2016.

B. A. Pratama and F. A. Hermawati, “Sistem Pengenalan Manusia Melalui Keunikan Fisiologis Selaput Pelangi Mata Dengan Menggunakan Filter Log Gabor,” KONVERGENSI, vol. 13, no. 1, pp. 11–17, 2017.

N. S. Fathonah, A. Y. Pratama, and F. A. Hermawati, “Kalkulator Saintifik Berbasis Kamera,” Konvergensi, vol. 15, no. 2, pp. 107–112, 2019.

A. K. W. Hapantenda, A. Januantoro, and I. Listiowarni, “Studi Independen Komparasi Segmentasi Sel darah Putih Menggunakan Ruang Warna HSV Dengan CIE-L*a*b,” Konvergensi, vol. 15, no. 2, pp. 97–104, 2019.

Y. Zhang and L. Wu, “Optimal multi-level thresholding based on maximum Tsallis entropy via an artificial bee colony approach,” Entropy, vol. 13, no. 4, pp. 841–859, 2011.

R. Huang, B. Liu, W. Su, and H. Lin, “Research on braille music recognition based on convolutional neural network,” ICNC-FSKD 2018 - 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, pp. 837–843, 2018.

A. F. Agarap, “Deep Learning using Rectified Linear Units (ReLU),” no. 1, pp. 2–8, 2018.

A. Giusti, D. C. Cireşan, J. Masci, L. M. Gambardella, and J. Schmidhuber, “Fast image scanning with deep max-pooling convolutional neural networks,” 2013 IEEE International Conference on Image Processing, ICIP 2013 - Proceedings, pp. 4034–4038, 2013.

W. Ma and J. Lu, “An Equivalence of Fully Connected Layer and Convolutional Layer,” no. 3, pp. 1–9, 2017.

A. S. Rawat, J. Chen, F. Yu, A. T. Suresh, and S. Kumar, “Sampled softmax with random fourier features,” Advances in Neural Information Processing Systems, vol. 32, no. 2, 2019.

Published
2022-02-10
Section
Articles