PERENCANAAN PEMELIHARAAN MESIN PADA AREA PROCESSING TEMBAKAU DENGAN MENGGUNAKAN METODE RELIABILITY-CENTERED MAINTENANCE II DAN 5S

(Sudi Kasus: Koperasi Karyawan Redrying Bojonegoro)

Vicka Nurul Agustine¹, Yudi Syahrullah², Ayu Anggraeni Sibarani³

 $\label{lem:program} Program\ Studi\ Teknik\ Industri,\ Universitas\ Jenderal\ Soedirman\ E-mail:\ vicka.agustine@mhs.unsoed.ac.id^1,\ yudi.syahrullah@unsoed.ac.id^2,\ ayu.anggraeni.sibarani@unsoed.ac.id^3$

ABSTRAK

Koperasi Karyawan *Redrying* Bojonegoro (KAREB) merupakan badan usaha bidang jasa yang melakukan *processing* tembakau yang mengalami permasalahan kegagalan mesin dan peralatan yang mengakibatkan *downtime* dan *delay*. Penjadwalan pemeliharaan mesin dan peralatan belum dilakukan secara optimal, sehingga menyebabkan *downtime* dan *delay* tidak terencana. Tujuan penelitian ini adalah melakukan penjadwalan *maintenance* pada mesin kritis dan memperbaiki habit kerja di KAREB. Metode yang digunakan yaitu *Reliability Centered Maintenance* (RCM) II dengan melakukan analisis *Failure Mode and Effect Analysis* (FMEA), perhitungan *Time to Failure* (TTF), *Time to Repair* (TTR) serta penerapan prinsip 5S. Hasil pengolahan data dengan FMEA menunjukkan mesin atau peralatan kritis *processing* tembakau adalah *conveyor* no.37, pisau *feeding* dan *airlock*. Perhitungan lebih lanjut menunjukan interval *maintenance* pada *conveyor* no.37 sebesar 210 jam, pisau *feeding* sebesar 281 jam dan *airlock* sebesar 368 jam. Selain itu, di terapkan juga *tagging* pada mesin untuk dokumentasi *maintenance* dan menerapkan 5S untuk meingkatkan efektivitas dan keamanan kerja.

Kata kunci: 5S; FMEA; Interval Maintenance; RCM II.

ABSTRACT

The Redrying Bojonegoro Employee Cooperative (KAREB) is a service business entity that performs tobacco processing which experiences problems with machine and equipment failures that result in downtime and delay. The machine and equipment maintenance schedule must be optimized, causing unplanned downtime and delays. This research aims to schedule maintenance on critical machines and improve work habits at KAREB. The method used is Reliability Centered Maintenance (RCM) II by conducting Failure Mode and Effect Analysis (FMEA), calculating Time to Failure (TTF), Time to Repair (TTR), and applying the 5S principles. The data processing results with FMEA show that the critical tobacco processing machines or equipment are conveyor 37, feeding knives, and airlocks. In addition, tagging is also applied to devices for maintenance documentation and implementing 5S to increase work effectiveness and safety. Further calculations show that the maintenance interval for conveyor 37 is 210 hours, the feeding knife is 281 hours, and the airlock is 368 hours.

Keywords: 5S; FMEA; Maintenance Interval; RCM II.

PENDAHULUAN

Maintenance merupakan suatu upaya yang dilakukan untuk menjaga suatu barang atau memperbaikinya sampai suatu kondisi yang bisa diterima [2]. Kegiatan perencanaan maintenance dilakukan untuk mengurangi terjadinya breakdown mesin, mengurangi kegagalan mesin atau peralatan sebelum waktunya dan meningkatkan waktu pemeliharaan pada akurasi yang lebih tinggi [3]. Apabila maintenance yang diterapkan masih menimbulkan tingkat downtime yang tinggi, maka strategi maintenance yang saat ini diterapkan perusahaan masih belum tepat, seperti halnya yang terjadi di Koperasi Karyawan Redrying Bojonegoro (KAREB). Terdapat berbagai macam jenis mesin maupun peralatan yang ada di KAREB untuk processing tembakau yang terkadang mengalami kegagalan saat beroperasi. Berdasarkan observasi awal pada unit usaha ini, trouble mesin atau peralatan pada area processing tembakau pada bulan Januari tahun 2019 sampai April 2021 menunjukkan jumlah frekuensi breakdown mesin sebanyak 744 kejadian.

Tidak hanya menggunakan data historis, penelitian juga melakukan observasi lapangan sehingga dapat mengetahui bentuk kegagalan yang terjadi dan cara para mekanik mengatasi kegagalan secara langsung. Diketahui bahwa KAREB menerapkan sistem *breakdown maintenance*, selain itu permesinan yang digunakan adalah mesin tua dan peralatan yang digunakan juga sederhana. Pekerja KAREB sering tidak menggunakan APD dan menerapkan *habits* kerja yang kurang baik meskipun telah merasakan dampak seperti tangan kapalan, menghirup aroma tembakau yang menyengat, mata sepat, area kotor maupun luka kecil.

Dengan melihat keadaan tersebut, maka penelitian ini dilakukan dengan menggunakan metode RCM II untuk menentukan strategi maintenance yang akan menjamin sistem keandalan dengan kondisi spesifik [6] dan menentukan interval maintenance. Kelebihan metode ini adalah dapat menghasilkan sistem maintenance terencana yang kuat dan efektif [4] dan dapat membuat alternatif maintenance berdasarkan kriteria opsional, ekonomis dan keamanan [9]. Penilaian resiko pada dilakukan dengan menerapkan metode FMEA dan mendapatkan nilai RPN untuk mempermudah penentuan mesin/peralatan kritis. Penetapan interval maintenance dilakukan dengan perhitungan statistik serta menggunakan distribusi data kegagalan dan perbaikan mesin/peralatan. Distribusi yang digunakan adalah distribusi Eksponensial, Lognormal dan Weibull [1] karena dapat menggambarkan umur mesin yang berkaitan dengan laju kerusakan yang tidak konstan [8]. 5S diterapkan untuk memperbaiki habits kerja KAREB dan mengurangi aktivitas pemborosan [12][7] secara seiri atau ringkas, seiton atau rapi, seiso atau resik, seiketsu atau rawat dan shitsuke atau rajin. 5S juga dapat berperan dalam menambah motivasi kerja, meningkatkan loyalitas, meningkatkan keselamatan kerja dan sebagai upaya dalam mengurangi limbah [10].

MATERI DAN METODE

Penelitian di mulai dengan menentukan perumusan masalah yang ada di KAREB, kemudian melakukan peninjauan penelitian baik menggunakan studi literatur, observasi lapangan maupun wawancara. Langkah selanjutnya adalah melakukan pengumpulan data, pengolahan data, menentukan mesin/peralatan kritis, analisa *Failure Modes and Effect Analysis* (FMEA) dan RCM II, menentukan distribusi data, menentukan interval *maintenance*, penerapan 5S, membuat analisis dan di akhiri dengan menarik kesimpulan dan saran.

Identifikasi Variabel

Variabel yang diamati dalam penelitian ini ada dua jenis, yaitu variabel terikat berupa interval waktu *maintenance* dan variabel bebas berupa waktu antar kerusakan, lama perbaikan, sebab dan akibat kegagalan.

Pengumpulan Data

Data yang dikumpulkan dari lokasi penelitian di bedakan menjadi 2, yaitu data kualitatif dan data kuantitatif. Data kualitatif terdiri dari data fungsi mesin atau peralatan, data kegagalan, data penyebab kegagalan, data dampak kegagalan. Sedangkan data kuantitatif terdiri dari waktu antar kerusakan dan waktu perbaikan. Selain data tersebut, data lain yang digunakan adalah data dari hasil studi literatur, wawancara dan data hasil pengamatan lapangan.

Pengolahan Data

Tahapan untuk mengolah data kualitatif, meliputi:

- 1. Menentukan mesin atau peralatan kritis, yaitu berdasarkan frekuensi kegagalan terbanyak, yang memiliki peran penting dalam *processing* tembakau dan *downtime* terlama.
- 2. Failure Mode and Effect Analysis (FMEA) merupakan langkah mengolah data kualitatif untuk menemukan kegagalan dalam proses manufaktur dan efek kegagalannya dalam proses produksi [5]. Penilaian severity, occurance dan detection dilakukan untuk mendapatkan nilai RPN dengan persamaan (1). RPN = severity (S) × occurrence (O) × detection (D) (1)
- 3. RCM II *Decision Worksheet* digunakan untuk menggambarkan, memilih dan membuat alternatif pemeliharaan dan perawatan berdasarkan kriteria operasional, ekonomis dan keamanan sehingga dapat mengatasi *failure mode* yang terjadi [13].
- 4. 5S merupakan *tools* untuk mengurangi dan mengatasi pemborosan dan bermanfaat untuk mencegah terjadinya *domino effect*.

Tahapan untuk mengolah data kuantitatif, meliputi:

- 1. Penentuan Distribusi Data *Time to Failure* (TTF), Data *Uptime* dan *Time To Repair* (TTR) yaitu apakah berdistribusi *Eksponensial, Lognormal* atau *Weibull* pada setiap mesin/peralatan kritis.
- 2. Goodness of Fit Test data TTF dan TTR
- 3. Perhitungan Parameter
- 4. Perhitungan MTTF dan MTTR
- 5. Interval *Maintenance*

HASIL DAN PEMBAHASAN

Penentuan mesin/peralatan kritis dilakukan dengan kriteria frekuensi kegagalan tertinggi dari kurun waktu tertentu; peran dan fungsi mesin/peralatan di *processing* tembakau; serta lamanya *downtime* yang terjadi saat terjadi kegagalan. Didapatkan 3 Mesin/peralatan kritis yaitu *conveyor* no.37 pada area *Threshing* II, pisau *feeding* pada area *Feeding* dan *airlock* pada area *Threshing* I.

Failure Mode and Effect Analysis (FMEA)

Setelah mengetahui mesin/peralatan kritis, selanjutnya adalah melakukan analisis kegagalan. *Conveyor* no. 37 memiliki 2 jenis kegagalan yang dapat terjadi yaitu *conveyor* no. 37 putus dan penyekat sela *conveyor* no. 37 terbuka. Pada pisau *feeding*, memiliki 3 jenis kegagalan yaitu pisau *feeding slip*, pisau *feeding* tersumbat dan pisau *feeding* lepas. Sedangkan kegagalan yang terjadi pada *Airlock* adalah *Airlock* tersumbat.

Nilai RPN di dapat dengan mengidentifikasi *failure mode, cause of failure, failure effect, severity, occurance* dan *detection*. Analisa FMEA yang dapat dilihat pada Tabel 1 menunjukkan mesin/peralatan kritis dengan nilai RPN tertinggi terjadi pada *conveyor* no.37 putus sebesar 140, pisau *feeding* slip sebesar 140 dan *Airlock* tersumbat sebesar 162. Maka dari itu, perhitungan interval *maintenance* akan di lakukan pada mesin/peralatan dengan kondisi tersebut.

RCM II Decision Worksheeet

Dalam RCM II decision worksheet terdapat informasi lebih detail yang memuat failure mode, cause of failure, failure effect/consequence evaluation, proactive task, proposed task dan can be done by [11]. Dari pertimbangan yang telah dilakukan baik berdasarkan hasil FMEA, tinjauan pustaka maupun brainstroming, maka dibuat RCM II decision woeksheet pada mesin/peralatan kritis pada processing tembakau yang ditampilkan dalam Tabel 2.

5S (Seiri, Seiton, Seiso, Seiketsu, Shitsuke)

Berdasarkan kondisi yang ada di perusahaan, maka perlu dilakukan perhatian untuk penerapan 5S. Penerapan 5S ini dapat diterapkan saat melakukan kegiatan *maintenance* maupun aktivitas kerja lainnya. Selain itu, dalam penerapan 5S, terdapat usulan berupa 2 format tag dokumentasi yaitu tag trouble machine yang digunakan untuk mencatat kejadian kegagalan pada mesin atau peralatan dari awal sampai mesin dapat digunakan kembali serta mencatat tindakan perbaikan yang dilakukan (Gambar 1) dan tagging checklist digunakan untuk memeriksa kondisi mesin atau peralatan sebelum waktu interval maintenance (Gambar 2). Penerapan 5S yang dapat diterapkan di KAREB telah terangkum dalam Tabel 3.

	Tag Tro	uble M	[achine	
Nama Mo				
Area	:			
Hari, Tanggal	Nama Komponen		aktu agalan	Keterangan
Tanggar	Komponen	Start	Finish	

Gambar	1. 7	Гад	troul	ole	machine
--------	------	-----	-------	-----	---------

	Tagging Checklist										
Nama Me											
Area	:										
Hari,	Nama	Cen	tang	Vatarongon							
Tanggal	Komponen	Baik	Ganti	Keterangan							

Gambar 2. Tagging checklist

Tabel 1. Hasil Analisis FMEA Mesin/peralatan Kritis

			raber 1. F	iasii Anaiisis Fivie		1	us			
FMEA Workshee	et .			SYSTEM: PROCESSIN WORKSTATION: THRE			FEEDING			
Workstation	Machine	Function	Failure mode	Failure Effect	Severity	Potential Cause of Failure	Occurrence	Current Control	Detection	RPN
THRESHING I	Airlock	Berfungsi untuk mencegah agar udara luar tidak bisa masuk sehingga proses pemisahan daun dan batang tembakau berjalan dengan baik.	Airlock tersumbat	Material tidak dapat melanjutkan ke proses selanjutnya Conveyor berhenti Upah pekerja terdampak karena hasil processing tembakau kurang dari target	6	Airlock tersumbat material Material masuk dalam jumlah yang besar	3	Pembersihan saat ganti <i>grade</i> atau pelanggan	9	162
THRESHING II	Conveyor	Berfungsi untuk men- transfer tembakau pada	Conveyor	TOTAL Conveyor berhenti	5	Ban conveyor putus Aligator Joint Conveyor kotor	4	Mengawasi atau patroli di setiap area	7	162 140
THRESHING II	no. 37	pemrosesan selanjutnya Berfungsi untuk men-	no.37 putus Penyekat sela	Material tidak dapat melanjutkan ke proses selanjutnya Material masuk dalam sela <i>conveyor</i>		Aligator Joint Conveyor longgar Penyekat sudah tidak kaku lagi		processing tembakau Membersihkan		
	Conveyor no. 37	transfer tembakau pada pemrosesan selanjutnya	Conveyor no.37 terbuka	Penyekat kotor Penyekat sobek	2	Penyekat sering terselip material	1	penyekat dari tembakau	3	6
FEEDING				TOTAL Area Conveyor feeding berhenti		Kurang pelumas				146
	Pisau	Berfungsi dalam perilaku awal	Diagrafia dia a	Material tidak terurai dengan baik Material menumpuk di conveyor		Setting yang kurang pas atau longgar		Setting ulang setiap ganti grade atau		
	feeding	memotong dan menghancurkan tembakau	Pisau feeding slip	Pisau <i>feeding</i> berhenti Material tidak dapat melanjutkan ke proses selanjutnya	5	Material menumpuk dan menempel pada pisau	4	pelanggan dan pengecekan akhir pekan	7	140
				Proses selanjutnya beroperasi tanpa mengolah material		Jenis material yang beraneka ragam				

Tabel 1. Hasil Analisis FMEA Mesin/peralatan Kritis (Lanjutan)

DATE A TEL 1 1		18	auci i. Hasii Alia				Lanjutan)			
FMEA Worksh	ieet			SISTEM: PROCE	ESSING TI	EMBAKAU				
				WORKSTATION	V: THRE	SHING I, THE	RESHING II a	and FEEDING		
Workstation	Machine	Function	Failure mode	Failure Effect	Severity	Potential Cause of Failure	Occurrence	Current Control	Detection	RPN
FEEDING	Pisau feeding	Berfungsi dalam perilaku awal memotong dan menghancurkan	Pisau <i>feeding</i> lepas	Area conveyor feeding berhenti Proses selanjutnya beroperasi tanpa mengolah material Berpotensi merusak komponen mesin lain	5	Pengunci pisau lepas Setting pengunci kurang kencang	1	Pengecekan akhir pekan	8	40
		tembakau	Pisau <i>feeding</i> tersumbat	Area conveyor feeding berhenti Proses selanjutnya beroperasi tanpa mengolah material	4	Material dating dalam jumlah besar dalam satu waktu	1	Meratakan material	7	28
				TOTAL						208

Tabel 2. RCM II Decision Worksheet

RCM II D	ecision Worksh	eet				G TEMBAKAU	store trories					
						ESHING I, THRES			D T			
Machine	Function	Failure Mode	Cause of Failure	Hidden failure (H)	Safety (S)	Environmental (E)	Operational (O)	Scheduled Restoration Task	Proactive Task Scheduled Discard Task	Scheduled On Condition Task	- Proposed Task	Can be done by
Airlock	Berfungsi untuk mencegah agar udara luar tidak bisa masuk sehingga proses pemisahan daun dan batang tembakau berjalan dengan	Airlock tersumbat	Airlock tersumbat material (tembakau) Material masuk dalam jumlah yang besar dalam waktu yang bersamaan	Upah pekerja terdampak karena hasil processing tembakau kurang dari target	-	Material tembakau berserakan di lantai processing.	Material tidak dapat melanjutkan ke proses selanjutnya Conveyor stasiun kerja threshing I berhenti	V	-	-	Tindakan perbaikan dan/atau pengawasan berkala pada <i>airlock</i> setiap terjadi penumpukan material yang banyak	Mekanik
Conveyor	Berfungsi untuk men- transfer tembakau pada pemrosesan selanjutnya	Conveyor no.37 putus	Ban conveyor putus Aligator Joint Conveyor longgar Aligator Joint Conveyor kotor	Upah pekerja terdampak karena hasil processing tembakau kurang dari target	-	Material tembakau berserakan di lantai processing.	Conveyor berhenti Material tidak dapat melanjutkan ke proses	-	V	-	Tindakan perbaikan berupa pembersihan dan/atau penggantian aligator joint conveyor pada saat conveyor putus	Mekanik
·	Berfungsi untuk men- transfer tembakau pada pemrosesan selanjutnya	Penyekat sela conveyor no.37 terbuka	Penyekat sela terbuka Terdapat material yang masuk dalam penyekat Penyekat sudah elastis	Penyekat menjadi semakin elastis	-	Material tembakau berserakan dari sela conveyor di lantai processing	selanjutnya - -	-	V	V	Tindakan pemeriksaan secara berkala dengan membersihkan sela conveyor apabila telah menggelembung dan menggangti penyekat sela conveyor terlihat mengenlinting atau sobek	Mekanik dan Pekerja produksi

Tabel 2. RCM II Decision Worksheet (Lanjutan)

RCM II Dec	cision Worksheet			SYSTEM:	PROCESSIN	ecision wori G TEMBAKAU ESHING I, THRE		<u>, , , , , , , , , , , , , , , , , , , </u>				
				Failu	ire Effect / C	onsequence Evalu	ation		Proactive Task		_	
Machine	Function	Failure Mode	Cause of Failure	Hidden failure (H)	Safety (S)	Environmental (E)	Operational (O)	Scheduled Restoration Task	Scheduled Discard Task	Scheduled On Condition Task	Proposed Task	Can be done by
	Berfungsi dalam perilaku awal memotong	Pisau feeding	Pengunci pisau lepas	Dapat merusak mesin maupun komponen lain	Dapat menimpa kaki pekerja	Material tembakau berserakan di lantai processing	Processing tembakau area feeding terhenti			V	Tindakan pemeriksaa n secara berkala pada pisau feeder, memperhati	Mekanik
	dan menghancurkan tembakau	lepas	Setting pengunci kurang kencang	Reliability mesin berkurang	-	-	-	-	-	V	kan kondisi pisau feeder dan pembersiha n secara menyeluruh	MERAHK
Pisau feeding			Kurang pelumas	-	-	Material tembakau berserakan di lantai processing.	Material tidak dapat melanjutka n ke proses selanjutnya Proses					
	Berfungsi dalam perilaku awal memotong dan	Pisau feeding	Setting yang kurang pas atau longgar	-	-	-	selanjutnya beroperasi tanpa mengolah material	-	-	V	pada pisau	Mekanik dan Pekerja
	menghancurkan tembakau	tersumbat	Material menumpuk dan menempel pada pisau	-	-	-	Pisau feeding berhenti				feeder, pembersiha n secara menyeluruh	produksi
			Jenis material yang beraneka ragam	-	-	-	Area Conveyor feeding berhenti					

Tabel 3. Penerapan 5S

Penerapan Seiri (Ringkas)	Penerapan Seiton (Rapi)	Penerapan Seiso (Resik)	Penerapan Seiketsu (Rawat)	Penerapan Shitsuke (Rajin)
Managadan kanan ang adia	Menggunakan alat semestinya untuk proses kerja dan tidak	Menyediakan alat kebersihan yang layak pakai	Melakukan pemeriksaan sesuai interval waktu yang ditentukan	Memastikan ketersediaan alat penunjang kerja seperti APD bagi pekerja, alat kebersihan, atau sarana penunjang processing lainnya
Menentukan barang yang paling sering digunakan, mungkin akan digunakan dan barang yang sudah	menggunakan alat pengganti	Melakukan pembersihan	Melakukan inspeksi setiap saat	Pekerja selalu menggunakan APD saat proses <i>feeding</i> tembakau (Proses <i>feeding</i> dilakukan tenaga manusia)
tidak digunakan kembali	Menyimpan kembali peralatan yang telah selesai digunakan.	dengan menggunakan mesin pembersih hisap agar lebih optimal	Membuat perancangan tagging <i>check list</i> pada setiap mesin processing tembakau untuk pencatatan kondisi mesin atau komponen	Melakukan proses <i>maintenance</i> pada waktunya (bukan saat <i>processing</i> tembakau berlangsung)
Menempatkan barang yang sering digunakan di dekat area kerja dan mudah dijangkau	Menggunakan catatan berupa tag yang diletakkan pada mesin untuk memudahkan dalam pendokumentasian riwayat kegagalan mesin terkait.	Pembersihan mesin atau komponen dilakukan sampai ke sela-sela mesin	Menggunakan peralatan sesuai fungsinya Melatih pekerja untuk mengetahui seluk- beluk area processing tembakau, seperti tempat alat, tombol kontrol mesin dan menaati aturan yang ada di KAREB	Membuat papan informasi atau imbauan mengenai keselamatan kerja dan penerapan 5S

Pendugaan Distribusi Data

Pendugaan awal distribusi dari data TTF/uptime dan TTR conveyor no.37, pisau feeding dan airlock dilakukan dengan perhitungan least square curve fitting untuk mendapat nilai index of fit. Hasil perhitungan menunjukkan seluruh data TTF/uptime diduga berdistribusi Weibull, sedangkan seluruh data TTR diduga berdistribusi lognormal. Persamaan yang digunakan antara lain:

$$\begin{array}{lll}
x_{i} & = \ln t_{i} & (2) \\
F(t_{i}) & = \frac{i-0.3}{n+0.4} & (3) \\
y_{i} & = \ln \left[-\ln \left[\frac{1}{1-F(t_{i})}\right]\right] & (4) \\
r & = \frac{n\sum_{i=1}^{n}xiyi-(\sum_{i=1}^{n}xi)(\sum_{i=1}^{n}yi)}{\sqrt{[n\sum_{i=1}^{n}xi^{2}-(\sum_{i=1}^{n}xi)^{2}][n\sum_{i=1}^{n}yi^{2}-(\sum_{i=1}^{n}yi)^{2}]}}
\end{array}$$

Tabel 4. Pegolahan data index of fit uptime

		14001	· r egorana	ii aata matast	of fit uptime		
i	ti	$ \ln ti = xi $	F(ti)	yi	xiyi	<i>xi</i> ^2	yi^2
1	0,497	-0,699	0,033	-3,403	2,380	0,489	11,584
2	7,747	2,047	0,079	-2,492	-5,101	4,191	6,208
3	12,163	2,498	0,126	-2,003	-5,005	6,242	4,014
	•••	•••		•••	•••		
21	4251,417	8,355	0,967	1,230	10,274	69,806	1,512
TOTAL	23228,107	115,753	10,500	-11,458	-7,667	751,757	33,870
		Index of fit				0,99	_

Uji Kesesuaian Distribusi (Goodness of fit)

Pengujian ini dilakukan dengan tujuan memperkuat pendugaan distribusi pada data TTF/uptime dan TTR. Pengujian kesesuaian distribusi pada data TTF/uptime yang diduga berdistribusi Weibull dilakukan dengan menggunakan uji Mann's test.

H₀: Data *uptime conveyor* no.37 pada stasiun kerja *threshing* II berdistribusi *Weibull* H₁: Data *uptime conveyor* no.37 pada stasiun kerja *threshing* II tidak berdistribusi *Weibull*

Penentuan Nilai α (taraf nyata) dan F_{tabel}:

$$\alpha = 0.05$$

$$k_1 = \frac{r}{2} = \frac{21}{2} = 10,5$$
 $V_1 = (2)(10,5) = 21$
 $k_2 = \frac{r-1}{2} = \frac{20}{2} = 10$ $V_2 = (2)(10) = 20$
F_{tabel} = F_{0,05,21,20} = 2,112

Persamaan yang digunakan untuk melakukan uji *goodness of fit* pada distribusi *weibull* antara lain:

$$Z_{i} = \ln\left[-\ln\left(1 - \frac{i - 0.5}{i + 0.25}\right)\right]$$

$$M_{i} = Z_{i} - Z_{i-1}$$
(6)
(7)

$$M_{i} = Z_{i} - Z_{i-1}$$

$$= ln \left[-ln \left[\frac{1}{1 - F(t_{i})} \right] \right]$$
(8)

Tabel 5. Pengolahan data uji goodness of fit distribusi Weibull

i	ti	$\ln(ti)$	Zi	Mi	$\begin{array}{c} ln_{ti-1} \\ - \ ln_{ti} \end{array}$	$\frac{(\ln t_{i-1} - \ln t_i)}{/M_i}$
1	0,497	-0,699	-3,738	1,123	2,746	2,445
2	7,747	2,047	-2,615	0,536	0,451	0,841

i	ti	ln(ti)	Zi	Mi	$ln_{ti-1} - ln_{ti}$	$\frac{(\ln t_{i-1} - \ln t_i)}{/M_i}$
3	12,163	2,498	-2,078	0,363	1,316	3,623
 21	 4251,417	 8,355	 1,207	•••	•••	

Setelah mendapatkan hasil perhitungan seperti pada Tabel 5, maka dapat diketahui nilai Fhitung dengan persamaan (11) yaitu:

F_{hitung}
$$= \frac{(10,5)(16,320)}{(10)(20,793)}$$
$$= 0,824 \text{ (H}_0 \text{ diterima)}$$

Pengujian kesesuaian distribusi pada data TTR yang diduga berdistribusi lognormal dilakukan dengan menggunakan uji Kolmogorov-Smirnov.

H₀: Data TTR *conveyor* no.37 pada stasiun kerja *threshing* II berdistribusi lognormal H₁: Data TTR *conveyor* no.37 pada stasiun kerja *threshing* II tidak berdistribusi lognormal

Penentuan Nilai α (taraf nyata) dan D_{tabel}:

$$\alpha = 0.05$$

$$\begin{array}{ll} D_{tabel} & = F_{0,05,22} \\ & = 0,281 \end{array}$$

Persamaan yang digunakan untuk melakukan uji goodness of fit pada distribusi lognormal anrata lain:

S
$$= \sqrt{\frac{\sum_{i=1}^{n}(t_1-\bar{t})^2}{n-1}}$$

$$Z_i = \left[\frac{t_i-\bar{t}}{s}\right]$$

$$D_1 = \Phi(Z_i) - \left(\frac{i-1}{n}\right)$$

$$D_2 = \frac{i}{n} - \Phi(Z_i)$$

$$D_n = \max\{D_1,D_2\}$$
(9)
(10)
(11)
(12)

$$D_1 = \Phi(Z_i) - \left(\frac{i-1}{n}\right) \tag{11}$$

$$D_2 = \frac{i}{-} \Phi(Z_i) \tag{12}$$

$$Dn = \max\{D_1, D_2\} \tag{13}$$

 $\Phi(Z_i)$ = Nilai tabel standardized normal probabilities (Z_i)

Tabel 6. Pengolahan data uji goodness of fit distribusi lognormal

i	ti	ln(ti)	$t_i - \overline{t}$	$(t_i - \overline{t})^2$	(i-1)/n	i/n	Zi	ФΖі	D1(i)	D2(i)
1	0,25	-1,386	-0,51	0,262	0	0,046	-1,35	0,089	0,089	0,043
2	0,33	-1,099	-0,43	0,183	0,045	0,091	-1,13	0,129	0,084	-
3	0,33	-1,099	-0,43	0,183	0,091	0,136	-1,13	0,129	0,038	0,038 0,007
 22	 1,67	 0,511	 0,91	0,820	 0,955	 1	2,39	 0,992	0,037	0,008

Setelah mendapatkan hasil perhitungan seperti pada Tabel 5, maka dapat diketahui nilai Dhitung dengan persamaan (11) yaitu:

$$\begin{array}{ll} D_{hitung} & = max\{D_1,D_2\} \\ & = 0.152 \ (H_0 \ diterima) \end{array}$$

Perhitungan Parameter

Setelah melakukan uji *goodness of fit*, perhitungan selanjutnya adalah perhitungan parameter. Perhitungan parameter untuk data TTF/*uptime* berdistribusi *Weibull* yaitu menggunakan persamaan berikut:

Gradien b
$$= \frac{n \sum_{i=1}^{n} x i. y i - \left(\sum_{i=1}^{n} x i\right) \left(\sum_{i=1}^{n} y i\right)}{n \sum_{i=1}^{n} x i^{2} - \left(\sum_{i=1}^{n} x i\right)^{2}}$$

$$A = \overline{y} - b \overline{x}$$

$$\alpha = b$$

$$\beta = e^{-\left(\frac{a}{b}\right)}$$
(14)
(15)
(16)

Tabel 7. Parameter distribusi weibull

i	ti	хi	F(ti)	yi	xiyi	xi^2	yi^2	
1	0,497	-0,699	0,033	-3,403	2,380	0,489	11,584	
2	7,747	2,047	0,079	-2,492	-5,101	4,191	6,208	
3	12,163	2,498	0,126	-2,003	-5,005	6,242	4,014	
			•••				•••	
21	4251,417	8,355	0,967	1,230	10,274	69,806	1,512	
Т	OTAL	115,7534	10,5	- 11,4581	-7,66696	751,7569	33,86982	

Berdasarkan perhitungan yang telah dilakukan, nilai $\alpha = 0.488$ dan nilai $\beta = 757,6356$.

Perhitungan parameter untuk data TTR berdistribusi lognormal hampir sama dengan perhitungan pada distribus*i weibull*, yaitu nilai gradien b menggunakan persamaan (14) dan nilai a menggunakan persamaan (15). Untuk menghitung parameter, persamaan yang digunakan adalah sebagai berikut:

$$S = \frac{1}{b} \tag{18}$$

$$t_{med} = e^{-sa} \tag{19}$$

Tabel 8. Parameter distribusi lognormal

i	ti	хi	F(ti)	yi	xiyi	<i>xi</i> ^2	yi^2
1	0,25	-1,386	0,031	-3,450	4,782	1,922	11,902
2	0,33	-1,099	0,076	-2,539	2,790	1,207	6,448
3	0,33	-1,099	0,121	-2,052	2,255	1,207	4,212
22	1,67	0,511	0,969	1,243	0,635	0,261	1,545
TOTAL		-8,658	11	-12,028	17,130	8,937	35,726

Berdasarkan perhitungan yang telah dilakukan, nilai s=0,446 dan nilai $t_{med}=0,861$

Perhitungan MTTF/MTBF dan MTTR/MTBR

Langkah selanjutnya adalah melakukan perhitungan *Mean Time to Failure* (MTTF) atau *Mean Time Between Failure* (MTBF) dengan persamaan berikut:

MTTF
$$= \beta \Gamma \left(\frac{1}{\alpha} + 1\right) \tag{20}$$

Sedangkan untuk melakukan perhitungan *Mean Time Between Replacement* (MTBR) atau *Mean Time to Repair* (MTTR) dilakukan dengan persamaan berikut:

$$MTBR = t_{med} \times e^{s^2/2}$$
 (21)

Nilai MTTF dan MTBR dari *conveyor* no.37 masing-masing 1586,519 Jam dan 0,951 Jam.

Perhitungan Reliability

Perhitungan *reliability* atau keandalan perlu dilakukan untuk mengetahui probabilitas mesin dalam melakukan fungsinya. Persamaan yang digunakan yaitu:

$$R(t) = exp\left(-\frac{t}{\beta}\right)^{\alpha} \tag{27}$$

Nilai Reliability dari conveyor no.37 adalah 0,238.

Perhitungan Interval Perawatan

Penentuan interval perawatan (t) berdasarkan waktu produksi yang dimiliki perusahaan. Persamaan yang digunakan untuk mencari nilai interval perawatan adalah sebagai berikut:

$$\frac{1}{u} = \frac{MTBR}{Rata-rata\ jam\ kerja\ per\ bulan}$$
 (28)

$$\frac{1}{i} = \frac{Rata - rata \, satu \, kali \, penggantian}{Rata - rata \, jam \, kerja \, per \, bulan}$$
 (29)

$$k = \frac{jumlah \ kerusakan}{28}$$

$$n = \sqrt{\frac{k \times i}{\mu}}$$

$$t = \frac{Rata - rata \ kerja \ per \ bulan}{n}$$
(30)

Interval maintenance dari conveyor no.37 adalah 210,5375 Jam

Hasil Rekapitulasi

Rekapitulasi pengolahan data kuantitatif pada *conveyor* no.37, pisau *feeding* dan *airlock* dapat diligat pada Tabel 9 dengan interval perawatan untuk conveyor no.37 dilakukan setelah conveyor beroperasi selama 210 jam. Sementara pisau *feeding* dapat diganti setelah digunakan selama 281 jam, dan Airlock diganti setelah mencapai umur 368 jam. Interval waktu tersebut merupakan waktu maksimum peralatan atau mesin beroperasi, artinya peralatan atau mesin tersebut harus sudah diganti sebelum mencapai interval waktu tersebut agar mesin tidak mengalami *down time* yang dapat menyebabkan terjadinya *delay*.

Tabel 9. Rakapitulasi Perhitungan pengolahan Data

M	Nama	Jenis Kegaga lan	Ket. (TF/Upti	Distrib usi	Parameter		MTTF/MTBF/ MTBR/	R(t	Interval Perawa
	Mesin/peralatan		me /TR)		α atau s	β atau tmed	MTTR (Jam))	tan (Jam)
•	Conveyor no 37		Untime	Weihull	0.488	757 6356	1586 519		

	Convey or no.37	TR	Lognor mal	0,446 1	0,861	0,951	0,2 38	210,537 5
	Pisau Feeding	TF	Weibull	0,564	993,555	1628,591	0,2	281,196
Pisau feeding		TR	Lognor mal	0,394 2	0,4848	0,524	67	2
		TF	Weibull	0,493	430,043	883,1905	0,2	368,082
Airlock	Airlock	TR	Lognor mal	0,565 3	0,6948	0,815	40	2

KESIMPULAN

Berdasarkan kriteria dan nilai RPN, mesin atau peralatan kritis terdapat pada stasiun kerja *threshing* II (*conveyor* no.37), stasiun kerja *feeding* (pisau *feeding*), dan stasiun kerja *threshing* I (*airlock*). Sementara berdasarkan perhitungan dan pengujian distribusi terhadap data *Time to Failure* (TTF) dan *Time to repair* (TTR) didapatkan bahwa seluruh data TTF berdistribusi *Weibull* dan seluruh data TTR berdistribusi *Lognormal*.

Hasil analisis *Reliability Centered Maintenance* II, kegiatan perawatan yang dilakukan pada *conveyor* no.37 adalah *scheduled discard task*, pada pisau *feeding* adalah *Scheduled On Condition Task*, dan pada *airlock adalah Scheduled Restoration Task*. Interval perawatan optimal yang direkomendasikan untuk *conveyor* no.37 dilakukan setiap 210,5 jam, pada pisau *feeding* dilakukan setiap 281,2 jam, sedangkan pada *airlock* dilakukan setiap 368,1 jam, jika dalam *processing* tembakau tidak mengalami pergantian grade atau pergantian pelanggan. Penerapan 5S yang direkomendasikan berupaya untuk mengurangi aktivitas pemborosan berupa aktivitas berlebih dan pendokumentasian data kerusakan mesin agar lebih efektif dan efisien.

Usulan perbaikan yang diberikan agar perusahaan dapat mengaplikasikan rekomendasi *maintenance* dengan dari penelitian yang telah dilakukan ini. Selain memperhatikan aspek *maintenance*, perusahaan juga perlu memperhatikan lingkungan kerja dalam segi keamanan dan keselamatan kerja serta pengurangan aktivitas pemborosan. Perusahaan menerapkan 5S serta pendokumentasian data kerusakan pada penelitian ini agar seluruh kejadian kegagalan mesin dapat terdokumentasi dengan akurat dan detail.

DAFTAR PUSTAKA

- A. Budiarti. (2006). Bab 2 landasan teori. *Jurnal Aplikasi dan Analisis Literatur Fasilkom UI*, pp.4-25.
- A.S. Corder. (1996). Teknik Manajemen Pemeliharaan. Erlangga: Jakarta.
- B. Suthep dan T. Kullawong. (2015). *Combining Reliability-Centered Maintenance With Planning Methodology And Applications In Hard Chrome Plating Plants*. International Journal of Technology, vol. 3, pp. 442-451.
- Fathurohman & Triyono. (2020). Reliability Centered Maintenance: The Implementation In Preventive Maintenance (Case Study In An Expedition Company). Jurnal Ekonomi Manajemen Bisnis, vol.1, no.2, pp. 197-212.
- G. Gupta. (2016). An Application of Reliability Centered Maintenance Using RPN Mean and Range on Conventional Lathe Machine," International Journal of Reliability, Quality and Safety Engineering, vol. 23, no. 6, pp. 1-10.

- H. Wibowo, A. Sidiq dan Ariyanto. (2017). Penjadwalan Perawatan Komponen Kritis Dengan Pendekatan *Reliability Centered Maintenance (RCM)* Pada Perusahaan Karet. *Jurnal Ilmiah Teknik Industri*, vol. 6, no.2, pp.79-87.
- Nursanti dan F. Musfiroh. (2017). Penerapan *Lean Warehouse* Pada Gudang Produk Jadi CV. Bumi Makmur, Karang Tengah, Wonogiri Untuk Meminimasi Pemborosan. *Jurnal Ilmiah Teknik Industri*, vol.5, no.2, pp.129-138.
- I.R. Bangun. (2014). Perencanaan Pemeliharaan Mesin Produksi Dengan Menggunakan Metode *Reliability Centered Maintenance* (RCM) II pada Mesin *Blowing Om* (Studi Kasus: PT. Industri Sandang Nusantara Unit Patal Lawang)," Skripsi, Jurusan Teknik Industri Universitas Brawijaya, Malang.
- J. Smith David. (2011). Reliability Maintenance and Risk Eight Edition". USA: Elsevier Ltd.
- R.A. Al-Aomar. (2011). Applying 5S Lean Technology: An Infrastructure for Continuous Process Improvement. World Academy of Science, Engineering and Technology 59.
- R. Simbolon, D. Simbolon dan P.J.Ginting. (2020). Perancangan Interval Perawatan Mesin secara Preventive Maintenance dengan Metode Reliability Centered Maintenance II (RCM II). Jurnal Indonesia Sosial Teknologi, vol.1, no. 3, pp. 210-221.
- V. Gaspersz dan A. Fontana. (2011). *Lean Six Sigma for Manufacturing and Service Industries*. Vinchristo Publication: Bogor.
- Ramadhan, Muhammad AZ. (2018). Penentuan Interval Waktu *Preventive Maintenance* pada *Nail Making Machine* dengan Menggunakan Metode *Reliability Centered Maintenance* (RCM) II. *Skripsi*, Jurusan Teknik Industri Universitas Muhammdiyah, Sidoharjo.

Perencanaan Pemeliharaan Mesin pada Area Processing...

(Halaman ini sengaja dikosongkan)