CROSS ENTROPY UNTUK OPTIMASI LAGRANGE MULTIPLIERS PADA SUPPORT VECTOR MACHINES SEBAGAI MODEL PREDIKSI FINANCIAL DISTRESS

Authors

  • Herlina . Teknik Industri, Universitas 17 Agustus 1945 Surabaya

DOI:

https://doi.org/10.30996/he.v13i02.878

Abstract

The competence in predicting financial distress becomes an important research due to
the advantage in preventing companies financial failure. Besides, financial distress
prediction model will give benefit to the investors and creditors. This research develop
a financial distress prediction model for listed manufacturing companies in Indonesia
using Support Vector Machines (SVM). Mathematically, SVM is formulated in the form
of quadratic programming, which requires high computational time in finding the
optimal solution. In this research, Cross Entropy (CE) is used to optimize one of the
SVM’s parameter that is Lagrange multipliers to find the optimal solution or near
optimal solution of dual Lagrange SVM. The accuracy of the prediction model and
computation time will be compared between standard SVM and CE-SVM. Finally, note
that the CE-SVM can solve classification problems in computing time 9.7 times shorter
than the standard SVM with good accuracy results.
Keywords: cross entropy, lagrange multipliers, support vector machines, financial
distress

Downloads

Download data is not yet available.

References

Ismi Lufina 2015, Studi Pemanfaatan Minyak Karet

(Hevea Brasiliensis) Sebagai Bahan Bakar Pada

Kompor Rumah Tangga, Jurnal Keteknikan

Pertanian Tropis dan Biosistem, Universitas

Brawijaya – Malang.

.Edi Mulyadi 2009,Degradasi sampah Kota (rubbish)

dengan Proses Pirolisis, Jurnal ilmiah Teknik

Lingkungan Universitas Pembangunan Nasional,

Surabaya.

Amran Japip 20014, Pembuatan Karbon Aktif Dari

Cangkang Kelapa Sawit Dengan Aktivator

H3PO4, Universitas Sumatra Utara

Aprian Ramadhan P., Munawar Ali,2015 Pengolahan

Sampah Plastik Menjadi Minyak Menggunakan

Proses Pirolisis, Universitas Pembangunan

Nasional, Surabaya

Mulyadi, E., 1989, “Pirolisis Blotong Keringâ€,

Makalah Seminar IPTEK nsono,

Trisunaryanti,W., dan Triyono, 2007, Pembuatan,

Karakterisasi dan Uji Aktivitas Katalis NiMo/Z

pada Reaksi Hidrorengka Id.wikipedia.org/wiki/

poliurethana

Harry H. Nazarudin 2008,

https//smk3ae.wordpress.com/…/poliurethan

polimer Universitas Indonesia

www.surabaya eastjava.com

Wijang Wisnu Raharjo, Dwi Aries Himawanto (2013)

Gitman, L. J., 2009, Principle of Management Finance, 12

th

edition, Pearson Education

Inc., Boston.

Gong, R. Dan Huang, S. H., 2012, A Kolmogorov-Smirnov Statistic Based

Segmentation Approach to Learning from Imbalanced Datasets: With Application

in Property Refinance Prediction, Expert Systems with Applications, vol. 39, hal.

-6200.

Han, J. dan Kamber, M., 2001, Data Mining: Concepts and Techniques, 2

nd

edition,

Elsevier Inc., San Fransisco.

Hogan, K. M., Olson, G. T. dan Rahmlow, H. F., 2000, A Model For The Prediction of

Corporate Bankruptcy Using The Analytic Hierarchy Process, Multi-Criteria

Applications, vol. 10, hal. 85-102.

Hui, X. F. dan Sun, J., 2006, An Application of Support Vector Machine to Companies’

Financial Distress Prediction, Lecture Notes Artificial Intelligent, vol. 3885, hal.

-282.

Koh, H. C. 2004, Going Concern Prediction using Data Mining Techniques,

Managerial Auditing Journal, vol. 19, hal. 462-476.

Li, H. dan Sun, J. 2009, Predicting Financial Failure Using Multiple Case Based

Reasoning Combine With Support Vector Machine, Expert Systems with

Applications, vol. 36, hal. 10085-10096.

Jurnal Teknik Industri HEURISTIC vol. 13 no. 2, Oktober 2016, hal. 77-88, ISSN: 1693-8232

Lin, F., Liang, D., dan Chen, E., 2011, Financial Ratio Selection for Business Crisis

Prediction, Expert Systems with Applications, vol. 38, hal. 15094-15102.

Martens, D., et al, 2008, Predicting Going Concern Opinion with Data Mining,

Decision Support Systems, Vol. 45, No. 4, hal. 652-660.

Martens, D., et al., 2010, Credit Rating Prediction Using Ant Colony Optimization,

Journal of Operational Research, vol. 61, hal. 561-573.

Martin, D., 1997, Early Warning of Bank Failure: A Logit Regression Approach,

Journal of Banking and Finance, vol. 1, hal. 249-276.

Min, J. H. dan Lee, Y. C., 2005, Bankruptcy Prediction Using Support Vector Machine

With Optimal Choice of Kernel Function Parameters, Expert Systems with

Applications, vol. 28, hal. 128-134.

Nisa, U. Z. (2013), “Model Prediksi Finansial Distress Pada Perusahaan Manufaktur Go

Public di Indonesiaâ€, Thesis Program Magister tidak diterbitkan, Surabaya:

Institut Teknologi Sepuluh Nopember.

Ohlson, J. A., 1980, Financial Ratios and The Probabilistic Prediction for Bankruptcy,

Journal of Accounting Research, vol. 18, hal. 109-131.

Omelda, I. dan Fernandez, E., 1997, Hybrid Classifiers for Financial Multicriteria

Decision Making: the Case of Bankruptcy Prediction, Computational Economics,

Vol. 10, hal. 317-335.

Outecheva, N., 2007, Corporate Financial Distress: An Empirical Analysis of Distress

Risk. Thesis Ph.D., University of St. Gallen, Russia.

Prastowo, D. (2011), Analisis Laporan Keuangan Konsep dan Aplikasi, Edisi ketiga,

UPP STIM YKPN, Yogyakarta.

Purnanandam, A., 2008, Financial Distress and Corporate Risk Management: Theory

and Evidence, Journal of Financial Economics, vol. 87, hal. 706-739.

Rafiei, F. M., Manzari, S. M. dan Bostanian, S., 2011, Financial Health Prediction

Models Using Artificial Neural Networks, Genetic Algorithm and Multivariate

Discriminant Analysis: Iranian Evidence, Expert Systems with Applications, vol.

, hal. 10210-10217.

Ross, S. A., Westerfield, R. W., dan Jordan, B. D., 2003, Fundamentals of Corporate

Finance, 6

th

edition, McGraw-Hill, New York.

Santosa, B., 2007, Data Mining: Teknik Pemanfaatan Data untuk Keperluan Bisnis,

Graha Ilmu, Yogyakarta.

Santosa, B., 2009, Application of the Cross-Entropy Method to Dual Lagrange Support

Vector Machine, Lectures Notes in Artificial, Springer.

Santosa, B. dan Willy, P., 2011, Metoda Metaheuristik Konsep dan Implementasi,

Guna Widya, Surabaya.

Setyowati, W., 2009, Strategi Manajemen Sebagai Faktor Mitigasi Terhadap

Penerimaan Opini Going Concern, Tesis Program Pasca tidak diterbitkan,

Semarang: Universitas Diponegoro.

Herlina, Cross Entropy untuk Optimasi Lagrange Multipliers . . .

Shin, K. S., Lee, T. S. dan Kim, H. J., 2005, An Application of Support Vector Machine

in Bankruptcy Prediction Model, Expert Systems with Applications, Vol. 28, hal.

-135.

Sun, J., Li, H., Huang, Q. H., dan He, K. Y., 2013, Predicting Financial Distress and

Corporate Failure: A Review From The State-of-the-art Definitions, Modeling,

Sampling, and Featuring Approaches, Knowledge Based Systems.

Tirapat, S. dan Nittayagasetwat, A., 1999, An Investigation of Thai Listed Firms’

Financial Distress Using Macro and Micro Variables, Multinational Finance

Journal, vol. 3, no. 2, hal. 103-125.

Tsai, C. F., 2009, Feature Selection in Bankruptcy Prediction, Knowledge Based

Systems, vol. 22, hal. 120-127.

Xie, C., Luo, C., dan Yiu, X., 2011, Financial Distress Prediction Based on SVM and

MDA Methods: The Case of Chinese Listed Companies, Qual Quant, vol. 45, hal.

-686.

Yang, C., et al., 2009, Constructing Financial Distress Prediction Model Using Group

Method of Data Handling Technique, Proceeding of the Eighth International

Conference on Machine Learning and Cybernetics, Baoding.

Downloads

Published

2016-10-13

How to Cite

., H. (2016). CROSS ENTROPY UNTUK OPTIMASI LAGRANGE MULTIPLIERS PADA SUPPORT VECTOR MACHINES SEBAGAI MODEL PREDIKSI FINANCIAL DISTRESS. Heuristic, 13(02). https://doi.org/10.30996/he.v13i02.878

Issue

Section

Articles