• Herlina . Teknik Industri, Universitas 17 Agustus 1945 Surabaya


The competence in predicting financial distress becomes an important research due to
the advantage in preventing companies financial failure. Besides, financial distress
prediction model will give benefit to the investors and creditors. This research develop
a financial distress prediction model for listed manufacturing companies in Indonesia
using Support Vector Machines (SVM). Mathematically, SVM is formulated in the form
of quadratic programming, which requires high computational time in finding the
optimal solution. In this research, Cross Entropy (CE) is used to optimize one of the
SVM’s parameter that is Lagrange multipliers to find the optimal solution or near
optimal solution of dual Lagrange SVM. The accuracy of the prediction model and
computation time will be compared between standard SVM and CE-SVM. Finally, note
that the CE-SVM can solve classification problems in computing time 9.7 times shorter
than the standard SVM with good accuracy results.
Keywords: cross entropy, lagrange multipliers, support vector machines, financial


Download data is not yet available.


Altman, E. I., 1968, Financial Ratios Discriminant Analysis and The Prediction of

Corporate Bankruptcy, Journal of Finance, vol. 23, hal. 1-22.

Beaver, W., 1966, Financial ratios as Predictors of Failure, Journal of Accounting

Research, vol. 4, hal. 71-111.

Chen, B. –T. dan Chen, M. –Y., 2010 ), Applying Particles Swarm Optimization For

Support Vector Machines On Predicting Company Financial Crisis, International

Herlina, Cross Entropy untuk Optimasi Lagrange Multipliers . . .

Conference on Business and Economics Research, vol. 1, Kuala Lumpur,


Chen, M. -Y., 2011, Bankruptcy Prediction in Firms with Statistical and Intelligent

Techniques and a Comparison of Evolutionary Approaches, Computers and

Mathematics with Applications, vol. 62, hal. 4514-4524.

Chen, W. S. dan Du, Y. K., 2009, Using Neural Networks and Data Mining Techniques

for the Financial Distress Prediction Model, Expert Systems with Applications,

vol. 36, hal. 4075-4086.

Deakin, E. B., 1972 , A Discriminant Analysis of Predictors of Business Failure,

Journal of Accounting Research, vol. 10, No.1, hal. 167-179.

Delen, D.,Kuzey, C. dan Uyar, A., 2013, Measuring Firm Performance Using Financial

Ratio: A Desicion Approach, Expert Systems with Applications, vol. 40, hal.


Ding , Y., Song, X. dan Zeng, Y., 2008, Forecasting Financial Condition of Chinese

Listed Companies based on Support Vector Machine, Expert Systems with

Applications, vol. 34, hal. 3081-3089.

Dwijayanti, P. F., 2010, Penyebab, Dampak, dan Prediksi dari Financial Distress Serta

Solusi Untuk Mengatasi Financial Distress, Jurnal Akuntansi Kontemporer, vol.

, hal. 191-205.

Firdausi, N., 2012, Analisis Financial Distress Dengan Pendekatan Data Mining Pada

Industri Manufaktur Go-Public di Indonesia, Tugas Akhir tidak diterbitkan,

Surabaya: Institut Teknologi Sepuluh Nopember.

Gitman, L. J., 2009, Principle of Management Finance, 12


edition, Pearson Education

Inc., Boston.

Gong, R. Dan Huang, S. H., 2012, A Kolmogorov-Smirnov Statistic Based

Segmentation Approach to Learning from Imbalanced Datasets: With Application

in Property Refinance Prediction, Expert Systems with Applications, vol. 39, hal.


Han, J. dan Kamber, M., 2001, Data Mining: Concepts and Techniques, 2



Elsevier Inc., San Fransisco.

Hogan, K. M., Olson, G. T. dan Rahmlow, H. F., 2000, A Model For The Prediction of

Corporate Bankruptcy Using The Analytic Hierarchy Process, Multi-Criteria

Applications, vol. 10, hal. 85-102.

Hui, X. F. dan Sun, J., 2006, An Application of Support Vector Machine to Companies’

Financial Distress Prediction, Lecture Notes Artificial Intelligent, vol. 3885, hal.


Koh, H. C. 2004, Going Concern Prediction using Data Mining Techniques,

Managerial Auditing Journal, vol. 19, hal. 462-476.

Li, H. dan Sun, J. 2009, Predicting Financial Failure Using Multiple Case Based

Reasoning Combine With Support Vector Machine, Expert Systems with

Applications, vol. 36, hal. 10085-10096.

Jurnal Teknik Industri HEURISTIC vol. 13 no. 2, Oktober 2016, hal. 77-88, ISSN: 1693-8232

Lin, F., Liang, D., dan Chen, E., 2011, Financial Ratio Selection for Business Crisis

Prediction, Expert Systems with Applications, vol. 38, hal. 15094-15102.

Martens, D., et al, 2008, Predicting Going Concern Opinion with Data Mining,

Decision Support Systems, Vol. 45, No. 4, hal. 652-660.

Martens, D., et al., 2010, Credit Rating Prediction Using Ant Colony Optimization,

Journal of Operational Research, vol. 61, hal. 561-573.

Martin, D., 1997, Early Warning of Bank Failure: A Logit Regression Approach,

Journal of Banking and Finance, vol. 1, hal. 249-276.

Min, J. H. dan Lee, Y. C., 2005, Bankruptcy Prediction Using Support Vector Machine

With Optimal Choice of Kernel Function Parameters, Expert Systems with

Applications, vol. 28, hal. 128-134.

Nisa, U. Z. (2013), “Model Prediksi Finansial Distress Pada Perusahaan Manufaktur Go

Public di Indonesiaâ€, Thesis Program Magister tidak diterbitkan, Surabaya:

Institut Teknologi Sepuluh Nopember.

Ohlson, J. A., 1980, Financial Ratios and The Probabilistic Prediction for Bankruptcy,

Journal of Accounting Research, vol. 18, hal. 109-131.

Omelda, I. dan Fernandez, E., 1997, Hybrid Classifiers for Financial Multicriteria

Decision Making: the Case of Bankruptcy Prediction, Computational Economics,

Vol. 10, hal. 317-335.

Outecheva, N., 2007, Corporate Financial Distress: An Empirical Analysis of Distress

Risk. Thesis Ph.D., University of St. Gallen, Russia.

Prastowo, D. (2011), Analisis Laporan Keuangan Konsep dan Aplikasi, Edisi ketiga,

UPP STIM YKPN, Yogyakarta.

Purnanandam, A., 2008, Financial Distress and Corporate Risk Management: Theory

and Evidence, Journal of Financial Economics, vol. 87, hal. 706-739.

Rafiei, F. M., Manzari, S. M. dan Bostanian, S., 2011, Financial Health Prediction

Models Using Artificial Neural Networks, Genetic Algorithm and Multivariate

Discriminant Analysis: Iranian Evidence, Expert Systems with Applications, vol.

, hal. 10210-10217.

Ross, S. A., Westerfield, R. W., dan Jordan, B. D., 2003, Fundamentals of Corporate

Finance, 6


edition, McGraw-Hill, New York.

Santosa, B., 2007, Data Mining: Teknik Pemanfaatan Data untuk Keperluan Bisnis,

Graha Ilmu, Yogyakarta.

Santosa, B., 2009, Application of the Cross-Entropy Method to Dual Lagrange Support

Vector Machine, Lectures Notes in Artificial, Springer.

Santosa, B. dan Willy, P., 2011, Metoda Metaheuristik Konsep dan Implementasi,

Guna Widya, Surabaya.

Setyowati, W., 2009, Strategi Manajemen Sebagai Faktor Mitigasi Terhadap

Penerimaan Opini Going Concern, Tesis Program Pasca tidak diterbitkan,

Semarang: Universitas Diponegoro.

Herlina, Cross Entropy untuk Optimasi Lagrange Multipliers . . .

Shin, K. S., Lee, T. S. dan Kim, H. J., 2005, An Application of Support Vector Machine

in Bankruptcy Prediction Model, Expert Systems with Applications, Vol. 28, hal.


Sun, J., Li, H., Huang, Q. H., dan He, K. Y., 2013, Predicting Financial Distress and

Corporate Failure: A Review From The State-of-the-art Definitions, Modeling,

Sampling, and Featuring Approaches, Knowledge Based Systems.

Tirapat, S. dan Nittayagasetwat, A., 1999, An Investigation of Thai Listed Firms’

Financial Distress Using Macro and Micro Variables, Multinational Finance

Journal, vol. 3, no. 2, hal. 103-125.

Tsai, C. F., 2009, Feature Selection in Bankruptcy Prediction, Knowledge Based

Systems, vol. 22, hal. 120-127.

Xie, C., Luo, C., dan Yiu, X., 2011, Financial Distress Prediction Based on SVM and

MDA Methods: The Case of Chinese Listed Companies, Qual Quant, vol. 45, hal.


Yang, C., et al., 2009, Constructing Financial Distress Prediction Model Using Group

Method of Data Handling Technique, Proceeding of the Eighth International

Conference on Machine Learning and Cybernetics, Baoding.

How to Cite