Random Forest Classifier Dengan Grid Search Untuk Klasifikasi Hasil Psikotes Pada Rekrutmen Dosen dan Tenaga Kependidikan
Abstract
ABSTRACT
Effective selection of educational staff and lecturers requires appropriate evaluation techniques to assess the abilities and potential of candidates. This research recommends using the Random Forest Classifier to classify psychological test results, with optimization using Grid Search and validation via K-Fold Cross Validation. This approach was chosen because of its ability to handle complex and heterogeneous data. Grid Search is used to search for the best parameter combination that improves model performance, while K-Fold Cross Validation ensures generalization reliability. This research used 616 data, consisting of 307 lecturers' and 309 psychological test results educational staff psychological test results. Data is divided into training (80%) and testing (20%) data. Classification report analysis shows an accuracy of 85% for the education staff dataset and 82% for the lecturer dataset.
Keywords: Random Forest Classifier; Grid Research; Psychological Test Results; K-Fold Cross Validation
ABSTRAK
Seleksi tenaga kependidikan dan dosen yang efektif memerlukan teknik evaluasi yang tepat untuk menilai kemampuan serta potensi kandidat. Penelitian ini merekomendasikan penggunaan Random Forest Classifier untuk mengklasifikasikan hasil psikotes, dengan optimasi menggunakan Grid Search dan validasi melalui K-Fold Cross Validation. Pendekatan ini dipilih karena kemampuannya dalam menangani data yang kompleks dan heterogen. Grid Search digunakan untuk mencari kombinasi parameter terbaik yang meningkatkan kinerja model, sementara K-Fold Cross Validation memastikan keandalan generalisasi. Penelitian ini menggunakan 616 data, terdiri dari 307 hasil psikotes dosen dan 309 hasil psikotes tenaga kependidikan. Data dibagi menjadi data pelatihan (80%) dan pengujian (20%). Analisis classification report menunjukkan akurasi sebesar 85% untuk dataset tenaga kependidikan dan 82% untuk dataset dosen.
Kata Kunci: Random Forest Classifier; Grid Research; Hasil Psikotes; K-Fold Cross Validation
Downloads
References
L. Binarwati, I. Mukhlash, and S. Soetrisno, “Implementasi Algoritma Genetika untuk Optimalisasi Random Forest Dalam Proses Klasifikasi Penerimaan Tenaga Kerja Baru: Studi Kasus PT.XYZ,” JURNAL SAINS DAN SENI ITS, vol. 6, no. 2, pp. A78–A82, 2017.
N. Zhu, C. Zhu, L. Zhou, Y. Zhu, and X. Zhang, “Optimization of the Random Forest Hyperparameters for Power Industrial Control Systems Intrusion Detection Using an Improved Grid Search Algorithm,” Applied Sciences (Switzerland), vol. 12, no. 20, Oct. 2022, doi: 10.3390/app122010456.
I. Muhamad and M. Matin, “Hyperparameter Tuning menggunakan GridsearchCV pada Random Forest untuk Deteksi Malware,” JURNAL MULTINETICS, vol. 9, no. 1, 2023.
D. Gentha, I. Desantha, K. Muslim Lhaksmana, and D. Richasdy, “Aplikasi Sistem Seleksi Pelamar Kerja dengan menggunakan Metode Random Forest.”
L. Breiman, “Random Forests,” Mach Learn, vol. 45, pp. 5–32, 2001.
N. R. Kurnianda, I. Mutia, and I. Hermadi, “Design of Psychological Test Expert System for New Employees Recruitment with Profile Matching Method,” European Alliance for Innovation n.o., Feb. 2022. doi: 10.4108/eai.28-10-2020.2315349.
J. Bergstra, J. B. Ca, and Y. B. Ca, “Random Search for Hyper-Parameter Optimization Yoshua Bengio,” 2012. [Online]. Available: http://scikit-learn.sourceforge.net.
R. Kohavi, “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection,” in Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (II), Montreal, Quebec, Canada, Aug. 1995, pp. 1137–1143. [Online]. Available: http//roboticsStanfordedu/"ronnyk
J. P. Matekenya, “A SWOT Analysis Of Machine Learning in Psychometric Evaluations For Recruitment,” 2020.
H. Jantan, A. R. Hamdan, and Z. A. Othman, “Human Talent Prediction in HRM using C4.5 Classification Algorithm,” International Journal of Advanced Trends in Computer Science and Engineering, vol. 02, no. 08, pp. 2526–2534, 2010, [Online]. Available: https://www.researchgate.net/publication/50194242
P. Refaeilzadeh, L. Tang, and H. Liu, “Cross-Validation,” in Encyclopedia of Database Systems, Boston, MA: Springer US, 2009, pp. 532–538. doi: 10.1007/978-0-387-39940-9_565.
B. Ghimire, J. Rogan, and J. Miller, “Contextual land-cover classification: Incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic,” Remote Sensing Letters, vol. 1, no. 1, pp. 45–54, Mar. 2010, doi: 10.1080/01431160903252327.
A. A. Mahmudi, “Sistem Pendukung Keputusan Rekrutmen Tenaga Kependidikan Menggunakan Metode Promethee,” vol. 3, no. 1, pp. 52–62, 2022.
M. Rianto and R. Yunis, “Analisis Runtun Waktu Untuk Memprediksi Jumlah Mahasiswa Baru Dengan Model Random Forest,” Paradigma - Jurnal Komputer dan Informatika, vol. 23, no. 1, Mar. 2021, doi: 10.31294/p.v23i1.9781.
M. Inda Rahayu and K. Ari Sambodo, “Random Forest Classification Of Jambi and South Sumatera Using ALOS PALSAR Data,” International Journal of Remote Sensing and Earth Sciences, vol. 10, no. 2, pp. 134–141, 2013.
Authors whose manuscript is published will approve the following provisions:
- The right to publication of all journal material published on the Konvergensi Teknologi Informasi & Komunikasi website is held by the editorial board with the author's knowledge (moral rights remain the property of the author).
- The formal legal provisions for access to digital articles of this electronic journal are subject to the terms of the Creative Commons Attribution-ShareAlike (CC BY-SA) license, which means Konvergensi Teknologi Informasi & Komunikasi reserves the right to store, modify the format, administer in database, maintain and publish articles without requesting permission from the Author as long as it keeps the Author's name as the owner of Copyright.
- Printed and electronic published manuscripts are open access for educational, research and library purposes. In addition to these objectives, the editorial board shall not be liable for violations of copyright law.