Arsitektur U-Net Untuk Mendeteksi Titik Api Kebakaran Hutan Dan Lahan Di Kalimantan Tengah Menggunakan Satelit Himawari 8

  • Baharuddin Baharuddin STMIK Catur Sakti Kendari
  • Andi Patombongi STMIK Catur Sakti Kendari
  • Andi Tenriawaru Universitas Halu Oleo
  • Cakra Cakra STMIK Catur Sakti Kendari
  • Andi Muh Islah STMIK Catur Sakti Kendari
Keywords: U-Net, Deteksi Titik Api, Kebakaran Hutan, Satelit Himawari 8, Kalimantan Tengah

Abstract

ABSTRACT

Early detection of fire hotspots is crucial to prevent the spread of fires and to mitigate the resulting environmental impacts. This study proposes the use of the U-Net model for detecting fire hotspots on Himawari 8 satellite imagery, specifically utilizing Band 7, which is sensitive to thermal radiation. Fire hotspot data from MODIS and VIIRS were employed as the ground truth to validate the model predictions. The U-Net model was trained on satellite imagery with binary crossentropy as the loss function and was evaluated using Area Under Curve (AUC), Percentage Correct (PC), Omission Error (OE), and Commission Error (CE) as evaluation metrics. The training results demonstrate that the model is capable of detecting fire hotspots with high accuracy, achieving an AUC of over 0.85 on the validation data after 300 epochs. Moreover, PC increased and OE decreased, indicating an improvement in the model's ability to accurately detect fire hotspots. In conclusion, the U-Net model developed in this study has shown good performance in detecting fire hotspots.

Keywords: U-Net, Detecting Fire Hotspots, Forest Fires, Himawari 8 Satellite, Central Kalimantan.

 

ABSTRAK

Deteksi dini titik api menjadi sangat penting untuk mencegah penyebaran kebakaran yang lebih luas dan mengurangi dampak lingkungan yang ditimbulkan. Penelitian ini mengusulkan penggunaan model U-Net untuk mendeteksi titik api pada citra satelit Himawari 8, khususnya dengan menggunakan Band 7, yang sensitif terhadap radiasi termal. Data titik api dari MODIS dan VIIRS digunakan sebagai ground truth untuk memvalidasi prediksi model. Model U-Net dilatih menggunakan citra satelit dengan metric binary crossentropy sebagai fungsi loss, dan dievaluasi menggunakan metrik Area Under Curve (AUC), Percentage Correct (PC), Omission Error (OE), dan Commission Error (CE). Hasil pelatihan menunjukkan bahwa model dapat mendeteksi titik api dengan akurasi yang tinggi, dengan AUC mencapai lebih dari 0.85 pada data validasi setelah 300 epoch. Selain itu, PC meningkat dan OE menurun, yang menandakan peningkatan kemampuan model dalam mendeteksi titik api secara akurat. Kesimpulannya, model U-Net yang dikembangkan dalam penelitian ini mampu mendeteksi titik api dengan performa yang baik.

Kata Kunci: U-Net, Deteksi Titik Api, Kebakaran Hutan, Satelit Himawari 8, Kalimantan Tengah.

Downloads

Download data is not yet available.

Author Biography

Andi Tenriawaru, Universitas Halu Oleo

Program Studi Sistem Komputer, Fakultas Matematika dan Ilmu Pengetahuan

References

N. Yulianti, H. Hayasaka, and A. Sepriando, “Recent trends of fire occurrence in Sumatra (analysis using MODIS hotspot data): a comparison with fire occurrence in Kalimantan,” Open J. For., vol. 3, no. 4, pp. 129–137, 2013.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention, Springer, 2015, pp. 234–241.

L. Penerbangan and A. Nasional, “Informasi Titik Panas (Hotspot) Kebakaran Hutan atau Lahan,” Bogor Deputi Bid. Penginderaan Jauh-LAPAN, 2016.

T. Wati and A. Panjaitan, “Forest fires detection in Indonesia using satellite Himawari-8 (case study: Sumatera and Kalimantan on august-october 2015),” in IOP Conference Series: Earth and Environmental Science, IOP Publishing, 2017, p. 12053.

A. Sepriando, H. Hartono, and R. H. Jatmiko, “Deteksi kebakaran hutan dan lahan menggunakan citra satelit himawari-8 di Kalimantan Tengah,” J. Sains Teknol. Modif. Cuaca, vol. 20, no. 2, pp. 79–89, 2019.

Z. Xie, W. Song, R. Ba, X. Li, and L. Xia, “A spatiotemporal contextual model for forest fire detection using Himawari-8 satellite data,” Remote Sens., vol. 10, no. 12, p. 1992, 2018.

E. Jang, Y. Kang, J. Im, D.-W. Lee, J. Yoon, and S.-K. Kim, “Detection and monitoring of forest fires using Himawari-8 geostationary satellite data in South Korea,” Remote Sens., vol. 11, no. 3, p. 271, 2019.

J.-L. Devineau, A. Fournier, and S. Nignan, “Savanna Fire Regimes Assessment With MODIS Fire Data: Their Relationship to Land Cover and Plant Species Distribution in Western Burkina Faso (West Africa),” J. Arid Environ., vol. 74, no. 9, pp. 1092–1101, 2010, doi: 10.1016/j.jaridenv.2010.03.009.

L. Giglio, W. Schroeder, and C. O. Justice, “The Collection 6 MODIS Active Fire Detection Algorithm and Fire Products,” Remote Sens. Environ., vol. 178, pp. 31–41, 2016, doi: 10.1016/j.rse.2016.02.054.

Y. Fu et al., “Fire detection and fire radiative power in forests and low-biomass lands in Northeast Asia: MODIS versus VIIRS Fire Products,” Remote Sens., vol. 12, no. 18, p. 2870, 2020.

K. P. Vadrevu, K. Lasko, L. Giglio, W. Schroeder, S. Biswas, and C. Justice, “Trends in Vegetation Fires in South and Southeast Asian Countries,” Sci. Rep., vol. 9, no. 1, 2019, doi: 10.1038/s41598-019-43940-x.

K. P. Vadrevu and K. Lasko, “Intercomparison of MODIS AQUA and VIIRS I-Band Fires and Emissions in an Agricultural Landscape—Implications for Air Pollution Research,” Remote Sens., vol. 10, no. 7, p. 978, 2018, doi: 10.3390/rs10070978.

K. Vadrevu, “Trends in Nighttime Fires in South/Southeast Asian Countries,” Atmosphere (Basel)., vol. 15, no. 1, p. 85, 2024, doi: 10.3390/atmos15010085.

P. H. Freeborn, W. M. Jolly, M. A. Cochrane, and G. Roberts, “Large Wildfire Driven Increases in Nighttime Fire Activity Observed Across CONUS From 2003–2020,” Remote Sens. Environ., vol. 268, p. 112777, 2022, doi: 10.1016/j.rse.2021.112777.

E. Scaduto, Б. Чэн, and Y. Jin, “Satellite-Based Fire Progression Mapping: A Comprehensive Assessment for Large Fires in Northern California,” Ieee J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 13, pp. 5102–5114, 2020, doi: 10.1109/jstars.2020.3019261.

H. Xu, Z. Gui, Z. Zhou, X. Zhou, and C. Zhou, “Forest Fire Monitoring and Positioning Improvement at Subpixel Level: Application to Himawari-8 Fire Products,” Remote Sens., vol. 14, no. 10, p. 2460, 2022, doi: 10.3390/rs14102460.

Z. Hong et al., “Active Fire Detection Using a Novel Convolutional Neural Network Based on Himawari-8 Satellite Images,” Front. Environ. Sci., vol. 10, 2022, doi: 10.3389/fenvs.2022.794028.

Y. Liang, L. Zhou, J. Chen, Y. Huang, R. Wei, and E. Zhou, “Monitoring and Risk Assessment of Wildfires in the Corridors of High-Voltage Transmission Lines,” Ieee Access, vol. 8, pp. 170057–170069, 2020, doi: 10.1109/access.2020.3023024.

Z. Deng and Z. Gui, “An Improved Forest Fire Monitoring Algorithm With Three-Dimensional Otsu,” Ieee Access, vol. 9, pp. 118367–118378, 2021, doi: 10.1109/access.2021.3105382.

A. Shimizu, “Introduction to Himawari-8 RGB composite imagery,” Meteorol. Satell. Cent. Tech. Note, vol. 65, p. 42, 2020.

Published
2025-01-26
Section
Articles