Penerapan Framework Flask Pada Machine Learning Dalam Memprediksi Umur Transformer
Abstract
Based on data from the Ministry of Energy and Mineral Resources (ESDM) shows that there has been an increase in electricity consumption of 5.46% since the pandemic hit Indonesia in early 2020. Disruption to the supply of electricity to customers can have a hugely detrimental effect in various sectors. The transformer is a static device to distribute electrical energy to customers. So that we can conclude that this device plays a vital role in measuring stability. This study aims to implement the flask framework and Machine Learning in predicting the life of transformers. The dataset uses measurement results using temperature, current, and voltage sensors. The results of this study indicate a prediction accuracy of 70% when using Multilayer Perceptron Method.
Keywords: Flask, Machine Learning, Prediction.
ABSTRAK
Berdasarkan data Kementerian Energi dan Sumber Daya Mineral (ESDM) pada awal tahun 2020 menunjukkan adanya peningkatan konsumsi listrik sebesar 5,46%. Terganggunya pasokan listrik pada pelanggan dapat menimbulkan efek kerugian yang besar diberbagai sektor. Trafo merupakan sebuah perangkat statis yang berfungsi dalam menyalurkan energi listrik kepada pelanggan. Sehingga bisa dikatakan perangkat ini memegang peranan vital yang kondisinya harus dipastikan kestabilannya. Penelitian ini bertujuan untuk mengimplementasikan framework Flask dan Machine Learning dalam memprediksi umur dari trafo. Adapun dataset yang digunakan menggunakan dataset hasil pengukuran menggunakan sensor suhu, arus dan tegangan. Hasil dari penelitian ini menunjukkan keakurasian prediksi sebesar 70% pada saat menerapkan Machine Learning dengan menggunakan Multilayer Perceptron.
Kata Kunci: Flask, Machine Learning, Prediksi Trafo.
Downloads
References
M. R. Mufid, A. Basofi and M. U. Harun, "Design an MVC Model using Python for Flask Framework Development," Surabaya, 2019.
D. F. Ningtyas and N. Setiyawati, "Implementasi Flask Framework pada Pembangunan Aplikasi Purchasing Approval Request," Jurnal Janitra Informatika dan Sistem Informasi, vol. 1, pp. 19-34, 2021.
G. F. Novindri and P. O. N. Saian, "Implementasi Flask Pada Sistem Penentuan Minimal Order Untuk Tiap Item Barang Di Distribution Center Pada PT XYZ Berbasis Website," MNEMONIC, vol. 5, 2022.
G. A. Ajenikoko and O. J. Ogunwuyi, "A Mathematical Model for Estimating the End-of- Life of Power Transformers: From Literature Review to Development Analysis," ASEAN Journal of Science and Engineering, 2022.
F. Azhar, Y. Rahmawati and I. Fadlika, "Estimasi Umur Transformator Distribusi Berdasarkan Pertumbuhan Beban dan Temperatur Lingkungan di Penyulang Bolo PLN Rayon Woha Kabupaten Bima," Seminar Nasional Inovasi dan Aplikasi Teknologi di Industr, 2019.
A. Verma, C. Kapoor and A. Sharma, "Web Application Implementation with Machine Learning," California, 2021.
R. Irsyad, "Penggunaan Python Web Framework Flask Untuk Pemula," ITB, Bandung, 2021.
R. M. Campos , Web environment for extraction and graphic analysis of classification models through data, Barcelona: Universitat Politècnica de Catalunya, 2021.
N. O. Rahardiani, W. F. Mahmudy and I. Indriati, "Optimasi Bobot Multi-Layer Perceptron Menggunakan Algoritma Genetika Untuk Klasifikasi Tingkat Resiko Penyakit Stroke," Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, 2018.
J. Jasmir, "Implementasi Teknik Data Cleaning Dan Teknik Roughset Pada Data Tidak Lengkap Dalam Data Mining," in Seminar Nasional APTIKOM (SEMNASTIKOM), Bali, 2016.
"Penerapan Komputasi Paralel pada Aplikasi Data Cleaning Multiple Data Edit," in Seminar Nasional Official Statistics, Jakarta, 2019.
I. Romli and R. F. P. Dewi, "Penerapan Data Mining Menggunakan Algoritma K-MEANS Untuk Klasifikasi Penyakit ISPA," Indonesian Journal of Business Intelligence, vol. 4, no. 1, 2021.
A. Patil, N. Kardekar, G. Ghawade, R. Shirke and P. Khadse , "Integration of Flask and Python on The Face Recognition Based Attendance System.," International Journal for Research Trends and Innovation , vol. 7, no. 6, 2022.
M. S. Bonney, M. d. Angelis and D. Wagg, "Digital Twin Operational Platform for Connectivity and Accessibility using Flask Python," UK, 2021.
P. S. Nishant, B. G. K. Mohan and S. Mehrotra, "Maize grading system using Deep learning and flask application," in International Conference on Artificial Intelligence and Smart Energy , India, 2022.
Authors whose manuscript is published will approve the following provisions:
- The right to publication of all journal material published on the Konvergensi Teknologi Informasi & Komunikasi website is held by the editorial board with the author's knowledge (moral rights remain the property of the author).
- The formal legal provisions for access to digital articles of this electronic journal are subject to the terms of the Creative Commons Attribution-ShareAlike (CC BY-SA) license, which means Konvergensi Teknologi Informasi & Komunikasi reserves the right to store, modify the format, administer in database, maintain and publish articles without requesting permission from the Author as long as it keeps the Author's name as the owner of Copyright.
- Printed and electronic published manuscripts are open access for educational, research and library purposes. In addition to these objectives, the editorial board shall not be liable for violations of copyright law.