Peramalan Tren Penjualan pada Sistem Informasi Inventory Barang Diecast Menggunakan Support Vector Regression
Abstract
Inventory management of diecast products is crucial for Sada Hobby store. The challenge in managing inventory lies in the importation of goods from overseas, which often lacks a definite delivery time, resulting in stock delays. An effective forecasting model is needed to address this challenge, such as Support Vector Regression (SVR), which can handle non-linear data using ε-sensitive approach. The SVR model predicts sales for each month in the next year, with accuracy measured using Mean Squared Error (MSE). The research results show that the SVR model estimates sales to be 8,423 units with an MSE accuracy of 0.0018. Sales predictions are also made for the Tomica brand (2,423 units, MSE 0.0019), Hotwheels brand (1,299 units, MSE 0.091), and Majorette brand (360 units, MSE 1.244). Although the MSE for these brands is higher than the overall sales prediction, the results are still good. The brand-based prediction process requires comparisons with all other brands, while the overall sales prediction sums up the sales results from all brands.
Downloads
References
D. I. Purnama and S. Setianingsih, “Support Vector Regression (SVR) Model for Forecasting Number of Passengers on Domestic Flights at Sultan Hasanudin Airport Makassar,” J. Mat. Stat. dan Komputasi, vol. 16, no. 3, pp. 391–403, 2020.
D. Suprayogi and H. F. Pardede, “Support Vector Regression Dalam Prediksi Penurunan Jumlah Kasus Penderita COVID-19,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 7, no. 2, pp. 63–70, 2022, doi: https://doi.org/10.31328/jointecs.v7i2.3687.
R. S. Laminullah, H. Annur, and I. S. K. Idris, “Prediksi Penjualan Pertalite Menggunakan Metode Support Vector Regression,” J. Tek. Elektro CosPhi, vol. 4, no. 1, pp. 12–14, 2020.
X. Yu, Z. Qi, and Y. Zhao, “Support Vector Regression for Newspaper/Magazine Sales Forecasting,” Procedia Comput. Sci., vol. 17, pp. 1055–1062, 2013, doi: https://doi.org/10.1016/j.procs.2013.05.134.
G. H. Saputra, A. H. Wigena, and B. Sartono, “Penggunaan Support Vector Regression dalam Pemodelan Indeks Saham Syariah Indonesia dengan Algoritme Grid Search,” Indones. J. Stat. Its Appl., vol. 3, no. 2, pp. 148–160, 2019.
I. Permana and F. N. Salisah, “The Effect of Data Normalization on the Performance of the Classification Results of the Backpropagation Algorithm,” Indones. J. Inform. Res. Softw. Eng., vol. 2, no. 1, pp. 67–72, 2022, doi: https://doi.org/10.57152/ijirse.v2i1.311.
R. G. Whendasmoro and J. Joseph, “Analisis Penerapan Normalisasi Data dengan Menggunakan Z-Score pada Kinerja Algoritma K-NN,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 4, pp. 872–876, 2022, doi: http://dx.doi.org/10.30865/jurikom.v9i4.4526.
R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice. Australia: OTexts: Melbourne, 2018.
N. T. Thomopoulos, Demand Forecasting for Inventory Control. Springer, Cham, 2014. doi: https://doi.org/10.1007/978-3-319-11976-2.
R. P. Furi, J. Jondri, and D. Saepudin, “Prediksi Financial Time Series Menggunakan Independent Component Analysis dan Support Vector Regression Studi Kasus: IHSG dan JII,” in Proceedings of Engineering, 2015, vol. 2, no. 2, pp. 3608–3618. [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/2745
M. Y. Darsyah, “Klasifikasi Tuberkulosis dengan Pendekatan Metode Supports Vector Machine (SVM),” J. Stat. Univ. Muhammadiyah Semarang, vol. 2, no. 2, pp. 37–41, 2014.
R. A. Putri, W. S. Winahju, and M. Mashuri, “Penerapan Metode Ridge Regression dan Support Vector Regression (SVR) untuk Prediksi Indeks Batubara di PT. XYZ,” J. Sains dan Seni ITS, vol. 9, no. 1, pp. D64–D71, 2020, doi: http://dx.doi.org/10.12962/j23373520.v9i1.51021.
Authors whose manuscript is published will approve the following provisions:
- The right to publication of all journal material published on the Konvergensi Teknologi Informasi & Komunikasi website is held by the editorial board with the author's knowledge (moral rights remain the property of the author).
- The formal legal provisions for access to digital articles of this electronic journal are subject to the terms of the Creative Commons Attribution-ShareAlike (CC BY-SA) license, which means Konvergensi Teknologi Informasi & Komunikasi reserves the right to store, modify the format, administer in database, maintain and publish articles without requesting permission from the Author as long as it keeps the Author's name as the owner of Copyright.
- Printed and electronic published manuscripts are open access for educational, research and library purposes. In addition to these objectives, the editorial board shall not be liable for violations of copyright law.