https://jurnal.untag-sby.ac.id/index.php/KONVERGENSI/issue/feed KONVERGENSI 2025-02-05T07:34:47+00:00 Fajar Astuti Hermawati fajarastuti@untag-sby.ac.id Open Journal Systems <p>P-ISSN: <strong><a href=" http://issn.pdii.lipi.go.id/issn.cgi?daftar&amp;1180427135&amp;1&amp;&amp; ">ISSN 1858-0688</a></strong> <br> E-ISSN: <strong><a href=" http://u.lipi.go.id/1580805931 ">ISSN 2721-0936</a></strong> <br><br> The journal started its publication in 2005 as a printed version under the title of Konvergensi. Obtained the ISSN from the Indonesian Institute of Sciences for print media, 1858-0688 and for online media 2721-0936. The email address is konvergensi@untag-sby.ac.id. The Konvergensi journal accepts articles related to the topic in Computer Science and Computer Engineering, such as Information System, Software Engineering, Artificial Intelligence, Data Mining, Process Mining, Natural Language Processing, Image and Signal Processing, Human Computer Interaction, Robotic, Computer Network, etc. The Konvergensi Journal is available in both print and online. The language used in this journal is Indonesian. This journal has been indexed by: Google Scholar, Sinta, PKP Index, Garuda, Zenodo</p> https://jurnal.untag-sby.ac.id/index.php/KONVERGENSI/article/view/12030 Arsitektur U-Net Untuk Mendeteksi Titik Api Kebakaran Hutan Dan Lahan Di Kalimantan Tengah Menggunakan Satelit Himawari 8 2025-02-05T07:34:46+00:00 Baharuddin Baharuddin tomfiq@gmail.com Andi Patombongi tomfiq@gmail.com Andi Tenriawaru tomfiq@gmail.com Cakra Cakra tomfiq@gmail.com Andi Muh Islah tomfiq@gmail.com <p><strong>ABSTRACT</strong></p> <p><em>Early detection of fire hotspots is crucial to prevent the spread of fires and to mitigate the resulting environmental impacts. This study proposes the use of the U-Net model for detecting fire hotspots on Himawari 8 satellite imagery, specifically utilizing Band 7, which is sensitive to thermal radiation. Fire hotspot data from MODIS and VIIRS were employed as the ground truth to validate the model predictions. The U-Net model was trained on satellite imagery with binary crossentropy as the loss function and was evaluated using Area Under Curve (AUC), Percentage Correct (PC), Omission Error (OE), and Commission Error (CE) as evaluation metrics. The training results demonstrate that the model is capable of detecting fire hotspots with high accuracy, achieving an AUC of over 0.85 on the validation data after 300 epochs. Moreover, PC increased and OE decreased, indicating an improvement in the model's ability to accurately detect fire hotspots. In conclusion, the U-Net model developed in this study has shown good performance in detecting fire hotspots.</em></p> <p><strong><em>Keywords</em></strong><em>: U-Net, Detecting Fire Hotspots, Forest Fires, Himawari 8 Satellite, Central Kalimantan.</em></p> <p>&nbsp;</p> <p><strong>ABSTRAK</strong></p> <p>Deteksi dini titik api menjadi sangat penting untuk mencegah penyebaran kebakaran yang lebih luas dan mengurangi dampak lingkungan yang ditimbulkan. Penelitian ini mengusulkan penggunaan model U-Net untuk mendeteksi titik api pada citra satelit Himawari 8, khususnya dengan menggunakan Band 7, yang sensitif terhadap radiasi termal. Data titik api dari MODIS dan VIIRS digunakan sebagai <em>ground truth </em>untuk memvalidasi prediksi model. Model U-Net dilatih menggunakan citra satelit dengan metric binary crossentropy sebagai fungsi loss, dan dievaluasi menggunakan metrik Area Under Curve (AUC), Percentage Correct (PC), Omission Error (OE), dan Commission Error (CE). Hasil pelatihan menunjukkan bahwa model dapat mendeteksi titik api dengan akurasi yang tinggi, dengan AUC mencapai lebih dari 0.85 pada data validasi setelah 300 epoch. Selain itu, PC meningkat dan OE menurun, yang menandakan peningkatan kemampuan model dalam mendeteksi titik api secara akurat. Kesimpulannya, model U-Net yang dikembangkan dalam penelitian ini mampu mendeteksi titik api dengan performa yang baik.</p> <p><strong>Kata Kunci</strong>: U-Net, Deteksi Titik Api, Kebakaran Hutan, Satelit Himawari 8, Kalimantan Tengah.</p> 2025-01-26T00:00:00+00:00 ##submission.copyrightStatement## https://jurnal.untag-sby.ac.id/index.php/KONVERGENSI/article/view/12196 Implementasi Text Summarization pada Ulasan Aplikasi Mobile JKN Menggunakan TF-IDF dan Cosine Similarity 2025-02-05T07:34:47+00:00 Valencia Ivena Lim 2150038@student.ppkia.ac.id Fitria Fitria fitria@ppkia.ac.id M. Hafid hafid@ppkia.ac.id <p><strong>ABSTRA</strong><strong>CT</strong></p> <p><em>Mobile JKN is an application developed by Badan Penyelenggara Jaminan Sosial (BPJS) Kesehatan that was developed for easier access to national health services. As of November 2024, this application has been downloaded 50 million times on the Google Play Store, and about 720 thousand reviews have been given by users. The reviews provided by users who have downloaded the Mobile JKN app are very useful and important for potential users and developers. However, the huge volume of reviews is a challenge in reading them one by one and can cause information overload. Based on the occurring problems, the author will apply text summarization to summarize the reviews of the JKN Mobile application by implementing the Term Frequency-Inverse Document Frequency (TF-IDF) and Cosine Similarity methods. The author added the Maximum Marginal Relevance (MMR) method because the TF-IDF and Cosine Similarity methods cannot produce a summary. Summarization is done by taking the most relevant reviews from among a collection of other reviews. This research resulted with the average Accuracy value of 29.6%, Precision 55.6%, and Recall 39.8%, with the highest value of Accuracy 38.4%, Precision 79.2%, and Recall 42.7%.</em>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;</p> <p><strong><em>Keywords</em></strong><em>: Cosine Similarity, Text Summarization, TF-IDF, MMR</em></p> <p><strong>&nbsp;</strong></p> <p><strong>ABSTRAK</strong></p> <p>Aplikasi Mobile JKN merupakan aplikasi yang dikembangkan oleh Badan Penyelenggara Jaminan Sosial (BPJS) Kesehatan yang dikembangkan untuk kemudahan akses layanan kesehatan nasional. Per November 2024, aplikasi ini telah diunduh sekitar 50 juta kali di Google Play Store dan sekitar 720 ribu ulasan telah diberikan oleh para pengguna. Ulasan-ulasan yang diberikan oleh pengguna yang telah mengunduh aplikasi Mobile JKN sangat bermanfaat dan penting bagi calon pengguna dan pengembang. Akan tetapi, volume ulasan yang sangat besar menjadi tantangan dalam membacanya satu per satu dan dapat menimbulkan <em>information overload</em>. Berdasarkan permasalahan yang terjadi, maka penulis akan menerapkan <em>text summarization</em> untuk meringkas ulasan-ulasan aplikasi Mobile JKN dengan mengimplementasikan metode <em>Term Frequency-Inverse Document Frequency</em> (TF-IDF) dan <em>Cosine Similarity</em>. Penulis menambahkan metode <em>Maximum Marginal Relevance</em> (MMR) karena metode TF-IDF dan <em>Cosine Similarity</em> tidak dapat menghasilkan ringkasan. Peringkasan dilakukan dengan mengambil ulasan-ulasan yang paling relevan dari antara kumpulan ulasan lainnya. Penelitian ini menghasilkan nilai rata-rata <em>Accuracy</em> 29,6%, <em>Precision</em> 55,6%, dan <em>Recall</em> 39,8% dengan nilai tertinggi <em>Accuracy</em> 38,4%, <em>Precision</em> 79,2%, dan <em>Recall</em> 42,7%.</p> <p><strong>Kata Kunci</strong>:<em> Cosine Similarity, Text Summarization, TF-IDF, MMR</em></p> 2025-01-26T15:38:45+00:00 ##submission.copyrightStatement##