
Journal of Information Technology and Cyber Security 2(1) January 2024: 15-24                      EISSN 2987-386X | PISSN 2987-3878 

DOI: 10.30996/jitcs.10511 

Research Article Alhamri et al. 
 

© 2024 The Author(s). Published by Department of Information Systems and Technology, Universitas 17 Agustus 1945 Surabaya, 

Indonesia. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/), which 

allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations 

are licensed under the identical terms. 

Supervised Learning Methods Comparison for Android Malware 

Detection Based on System Calls Referring to ARM (32-bit/EABI) 

Table 
 

Rinanza Zulmy Alhamri 1, , Toga Aldila Cinderatama 2, , Kunti Eliyen 3,*, and Abidatul 

Izzah 4,  

1,2,3,4 Department of Information Technology, Politeknik Negeri Malang, Indonesia 
∗ Corresponding author: kunti.eliyen@polinema.ac.id  

 

Received: 12 February 2024 Revised: 13 March 2024 

Accepted: 21 March 2024 Available online: 20 June 2024 

 

To cite this article: Alhamri, R. Z., Cinderatama, T. A., Eliyen, K., & Izzah, A. (2024). Supervised Learning Methods 

Comparison for Android Malware Detection Based on System Calls Referring to ARM (32-bit/EABI) Table. Journal of 

Information Technology and Cyber Security. 2(1), 15-24. https://doi.org/10.30996/jitcs.10511        

Abstract 
Android malware detection research is a topic that is still being developed. From all the detection tech-

niques developed, dynamic analysis methods have become interesting because they trace the suspect 

application system calls. Based on the system calls, by utilizing machine learning, the suspect application 

can be classified as malware or benign. Comparing the machine learning methods is im-portant to deter-

mine what method is best to support malware detection. This article aims to explain more clearly and 

simply the way to conduct Android malware detection based on system calls step by step using classifi-

cation. Furthermore, it presents the system calls sequence conversion referring to the arm(32-bit/EABI) 

table, which has 398 system calls (0-397) as features. It will provide a compari-son of several supervised 

machine-learning methods for classifying Android applications. This initial research is part of the other 

research that has the purpose of developing a malware detection system based on an Android applica-

tion. This research can be used to develop the best machine learning to classify malware applications 

using a Support Vector Machine (SVM), Decision Tree (DT), K-Nearest Neighbour (KNN), and Naive 

Bayes (NB). The result can be concluded that the KNN method has the lowest performance in detecting 

Android malware apps, with an accuracy of only 0.50. In comparison, the NB method has an accuracy 

of only 0,69. SVM and DT models have similar accuracy and recall results of 0.79 and 0.75, respectively, 

but DT obtained higher precision and scores of 0.83 and 0.76, respectively. Although in this study, the 

classification performance of DT is better than SVM, based on comparison with the results of previous 

research, SVM is a suitable method for Android malware de-tection based on system calls. It is proven 

by the results of research comparisons that the SVM method is always the method with the highest ac-

curacy score among other methods. For the next research, the SVM method can be used to develop a 

malware detection system for Android applications. 

Keywords: Android, Decision Tree, Machine Learning, Malware Detection, Supervised Learning, Naive 

Bayes.  

1. Introduction 
Malicious software or malware is malicious software criminals develop to weaken the host's hard-

ware. Currently, there are many malware applications with various impacts for Android applications es-

pecially. One of the impacts often encountered and often becomes a user issue is the decreased perfor-

mance of the device itself, such as a device that runs much slower than before. This is because malware 

running in the background causes high CPU (Central Processing Unit) load, low storage capacity, and more 

significant memory usage (Negi et al., 2021; Selvaganapathy et al., 2021). Malware has several types, and 

their respective effects include adware, which creates lots of popup ads; spyware, which can monitor user 

activity on mobile devices; ransomware, which can lock data; and trojans, which attach to official applica-

tions but, when installed, can damage the system (Chandini et al., 2019).  
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Many previous studies have been carried out to develop malware detection for Android appliac-tions 

in Android mobile devices. Both developing methods for detecting and implementing detection ap-plica-

tions. Much research has been carried out in terms of implementing detection methods, such as us-ing the 

Support Vector Machine (SVM) method based on system call activity from applications suspected of being 

malware (Akbi et al., 2018). They provided the performance of SVM to classify the Android apps based on 

its system calls. Furthermore, malware detection has been carried out using SVM classification, which has 

been improved using the Decision Tree (DT) method to increase detection accuracy based on the condition 

of the Android mobile device (Yang et al., 2020). In the same way, they provided the per-formance of SVM 

that improved using DT to classify Android applications based on its system calls, Application Programming 

Interface (API), and permission called Dalvik Instruction. K-Nearest Neighbour (KNN) and Naive Bayes (NB) 

method also have been conducted to classify Android applica-tions using static or dynamic detection based 

on requested permissions, system API calls, and the activity (Arslan & Yurttakal, 2020; Pang & Bian, 2019).  

Meanwhile, in terms of implementing the detection application, researchers have also conducted 

various studies to apply malware detection methods to Android mobile devices. The majority of malware 

detection applications are implemented as agent applications to collect data on the device, then the data is 

sent to a server which acts as a detection model. Malware detection based on activities and conditions in 

applications and systems is called dynamic detection, while malware detection that examines the pro-gram 

contents of suspected applications is called static detection (Bhatia & Kaushal, 2017; Malik, 2019). A static 

malware detection application based on Android has been implemented as an agent (Habibi et al., 2017; 

Jusoh et al., 2021). As a static detection, the implementation was more complex than dynam-ic detection. 

The static detection depends with fixed system and (Habibi et al., 2017) utilized Kaspersky system to im-

plement static detection. Then the application of dynamic malware detection applications has been devel-

oped with a local client-server topology, both detections based on device resource condi-tions (Ribeiro et 

al., 2020) and based on system call activity (Zhang et al., 2022). Also hybrid method can be used to detect 

Android malware applications by integrating the features after static and dynamic anal-yses (Dhalaria & 

Gandotra, 2021).  

Researchers have also compared the performance of each machine-learning method in detecting 

malware. Each performance depends on what data reseaerchers use to classify. The machine learning 

method can support malware detection of an Android application, both based on system call activity from 

the application and the condition of the Android device. A comparison of machine learning methods has 

been carried out for Android malware classification based on system calls (Anshori et al., 2019). The meth-

ods compared include SVM, NB, DT, Random Forest, Log Regression, and KNN. It used 19 attrib-utes, 

consist of 18 features only and 1 class category. The result said that Random Forest method had the highest 

accuracy results with a percentage of 76%. Ribeiro et al. (2020) compared the machine learning methods 

based on condition of the Android device. The dataset was collected manually and the result said that SVM 

was the best method with 99.83% accuracy using proposed Host-based Intrution Detection System. 

Hadiprakoso et al. (2022) also compared the machine learning method based on the condition of the An-

droid device using DREBIN dataset. It resulted SVM was the best method with 96.94% accuracy. Hybrid 

analysis also have been carried out by combining static detection like condition of de-vice and dynamic 

detection like API call command using several deep learning methods (Hadiprakoso et al., 2021). The result 

said that Long Short-Term Memory (LSTM) model was the best method with 98.7% accuracy. Pure dynamic 

malware detection using Android device system call has been carried out by comparing several mechine 

learning methods (Zhang et al., 2022).The result said that Multi Layer Per-ceptron (MLP) was the best 

method with 99.34% accuracy.  

Comparing the machine learning methods is important to determine what method is best to sup-port 

malware detection. This research was conducted by referring Zhang et al. (2022) where utilizing Android 

applications system call as the subject to be analyzed. This article focuses to explain more clearly and 

simpler the way to conduct the Android malware detection based on system call step by step. Fur-thermore, 

this article presents the system calls sequence conversion referring to the arm(32-bit/EABI) table, which 

has 398 system calls (0-397) as features. This is the novelty of this research as a first step before creating 

a larger system for implementing and deploying Android-based malware detection appli-cations. For sure, 

it will be provided the comparison of several supervised machine learning methods for classifying the An-

droid application. The purpose of this research is to provide evidence of the best surpervised machine 

learning method for detecting Android malware based on its system calls. This arti-cle is part of the research 

to develop Android malware detection system that utilizing machine learning with Python based as server, 

cloud database Firebase as data intermediary, and Android application as a client interface. Later then, the 
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result will be used to determine what supervised machine learning meth-ods that best to support the Android 

malware detection system. 

2. Methods 
The development of supervised learning machines using the Python programming language where 

Python has several libraries to developing machine learning. Development is carried out in some sub stages 

including Data Collection, Model Implementation, and Model Testing as shown in the Fig. 1. 

 
Fig. 1. Research method. 

2.1. Data collection 
The purpose of data collection is to collect system call data from Android apps as a dataset. Refer-

ring to Zhang et al. (2022), it is needed 3000 system call per apps to get the best result. To validate the 

benign or malware apps then it is used virustotal.com to give label to the state of Android apps. The data 

collection consists of 50 benign apps and 50 malware apps. To make the data collection safer and more 

efficeient, then it is used Android virtualization using Genymotion and Android Studio emulator. To pro-duce 

natural 3000 system calls from the Android application, then it is used automatic and random stress-test 

application using The Monkey.  

How to produce the dataset for detecting Android malware as shown in Fig. 1 is based on some 

Android malware detection frameworks. Manzil and S (2023) stated in DynaMalDroid framework, dataset 

conducted from utilizing strace command and Monkey tool of the benign or malware Android application. 

As well as that, Shakya and Dave (2022) stated that data collection used strace command to achieve the 

system calls and MonkeyRunner for conditioning the Android device run the apps automatically. Data col-

lection was conducted to obtain a dataset. The dataset in question contains system-call sequence data 

from Android applications (both benign and malware), which have been converted into a series of numbers. 

Fig. 2 shows the stages in creating a dataset to develop a machine learning model. 

 

Fig. 2. Data collection stages. 

Based on Fig. 2, the following is a detailed explanation about dataset creation.  

1) Application Determination  

Benign applications are easy to obtain by visiting Google Play, which has been verified for security. 

Meanwhile, malware applications were obtained from information on the internet and then verified as 

unsafe by checking the .app files on virustotal.com. If the results of checking the application file are 

verified as dangerous (a warning displayed in red), then the application is considered a malware appli-

cation.  

2) Taking System Calls 

The applications that were classified as benign or malware all had their system-call data taken while 

they were running on an Android device. A simulation environment with the Genymotion and An-droid 

Studio emulator is used to retrieve system-call data. The following are detailed steps for re-trieving 

system-call data for a sample application. 

• The .app application is installed on the Genymotion and Android Studio emulator device, then runs 

the application. 

• In the adb shell terminal running on the host operating system, in this case, Ubuntu 22.04.3, the 

shell command searches for the PID and package name of the application.  

3) Once the package name is known, the application in question will be given random commands au-

tomatically (random stressed-test) using the Monkey application.  

4) As soon as the stressed test command is executed, the strace shell command is activated on the PID 

of the application in question, and the strace results are converted to a txt format file. Strace was 

carried out for one minute, which resulted in more than 3000 documented system calls.  

5) The results of the strace in the form of a .txt file are stored in the Android device emulator so that they 

can be retrieved to be stored on the host PC.  
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6) The result of system call data raw shown in Fig. 3. 

 
Fig. 3. System call resut data raw. 

7) Sequence Conversion  

After obtaining the system call data in the application in the form of a .txt file, the system call se-quence 

data is converted into a sequence of numbers. The number sequence of system calls refers to the 

ID/NR on the Android operating system using the ARM architecture processor in the arm(32-bit/EABI) 

table, which has 398 system calls (0-397) as features. The conversion is done using the Python pro-

gramming language. Utilizing the regular expression and csv libraries, the system call da-ta in the .txt 

file can be taken as a system call type to be converted into a number series and con-verted into a .csv 

format file. Following are the detailed conversion steps: 

• The input is in the form of .txt and the system call type were taken per line using the reg-ular ex-

pression library and then stored in the data list.  

• Take 3000 system calls by doing list slicing based on the list data previously obtained.  

• The data list that stores system call types is converted to ID/NR system call numbers on ARM ar-

chitecture processors utilizing regular expression sub functions.  

• The list that stores the number sequence of system calls is cleaned of spaces, non-alphabetical 

characters, and strings that do not match the name of the type of system call using the replace 

function. 

•  The list of results of cleaning foreign characters or strings that do not match the type of system call 

is converted to a .csv file using the library csv writer function. The results of the sys-tem call number 

sequence data are as shown in Fig. 4. 

 
Fig. 4. System call sequence conversion results. 

8) Labelling Since the dataset is used to train Supervised Machine Learning, there must be a classifi-

cation label on the dataset. Merging the converted .csv files for each application, both benign and 

malware, is put together in a .csv file manually with the attributes of the application name, classifica-

tion label, and the results of the strace as shown in Fig. 5. 

 
Fig. 5. Results of dataset creation. 

2.2. Model implementation 
After the dataset has been obtained, then stage model implementation is conducted. Model im-ple-

mentation aims to implement some supervised machine learning methods using Python programming lan-

guage. The machine learning methods that were implemented in this research include SVM, DT, KNN, and 

NB. The purpose of the model implementation is to classify dataset into supervised results include benign 

apps or malware apps. Using the library of scikit-learn, supervised machine learning can be con-ducted 

easily. 

Supervised machine learning was developed using the Python programming language in this re-

search. By utilizing the Scikit-learn library, SVM, DT, KNN, and NB classifier can be used. Machine learn-
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ing was developed to classify Android applications as benign or malware based on system call data. The 

following are detailed steps in developing supervised machine learning using the SVM, DT, KNN, and NB 

method until model accuracy testing is carried out.  

1) Reading Dataset 

The .csv format dataset contains system call sequences. Using the Pandas library, the .csv format file 

can be read, and you can choose which columns to read.  

2) Splitting Dataset  

The number of samples in the dataset divided into training data and testing data. In this study, 80% 

was used for training, while 20% was used for testing. Ratio 80/20 for splitting data into training and 

testing is common division. Furtermore based on Gholamy et al. (2018) ratio 80/20 can avoid over-

fitting and overestimate accuracy empirically. This section also differentiates between reading the da-

taset in the label column and the system call column.  

3) Feature Extraction  

Feature extraction is applied to assign a token to each system call number in the dataset (tokeniza-

tion). In this research, the CountVectorizer method is used, which can transform system call se-

quences into vector data (vectorization). Apart from providing token values and vector transfor-

mations, the countvectorizer also counts the number of occurrences of system call numbers in the 

dataset. By carrying out feature extraction, it will help improve the performance accuracy of the model 

implementation.  

4) Machine Learning Model  

The application of the machine learning model used the SVM, DT, KNN, and NB. In the Scikit-learn 

library, the SVM uses SVC method.  

• SVM - This research uses a SVM linear kernel type because the classification is carried out in binary. 

It was used default hyperparameters tuning including C = 1.0, Degree = 3, and Gamma using scale 

type.  

• DT - Whereas the DT used DecisionTreeClassifier method. Default hyperparameters was used for 

tuning including Criterion = ‘gini’ and Splitter = ‘best’. KNN - Then the KNN used KNeighborsClas-

sifier method. It was used default hyperparameters also including n_neighbors = 5, Weight using 

uniform type, and Algorithm = ‘auto’. Below is the KneighborsClassifier method used in the program.  

• NB – The last method used NB method with GaussianNB. NB method used default hyperpa-rame-

ters tuning including Priors = ‘None’ and var_smoothing = 1e-9. Below is the GaussianNB method 

used in the program. 

2.3. Model testing 
Model testing aims to obtain the performance of each machine learning method for classifying the 

data. Still by using scikit-learning library, the model testing can be done. Table 1 below is used to explain 

various terms for evaluating classification in this malware detection cases. 
Table 1 

Example of malware detection evaluation. 

No. Application (app) Real Label Classification Result 

1 Benign Benign 

2 Benign Benign 

3 Benign Benign 

4 Benign Benign 

5 Benign Malware 

6 Malware Benign 

7 Malware Malware 

8 Malware Malware 

9 Malware Malware 

10 Malware Malware 
 

From Teble 1 can be obtained:  

• True Positive: Malware classification results are according to the label = 4, 

• True Negative: Benign classification results are according to the label = 4, 

• False Positive: Malware classification results are not according to the label = 1, and 

• False Negative: Benign classification results are not according to the label = 1.  

Based on the terms, the testing includes:  

• Accuracy  
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Accuracy ia the precentage of labels that the model successfully predicted. If the model can classify 8 

appliacations accurately from 10 data applications than accuracy (A) is 0.8 as shown in Eq. (1), 

𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
               (1)  

where TP is True Positive, TN is True Negative, FP is False Positive, and FN is False Negative. A high 

accuracy score means more accurate the model to classify Android applications whether mal-ware or 

benign application generally 

• Precision  

Precision measures the ratio between true positive prediction and all positive result prediction. If the 

model can classify 5 data applications into malware from 10 data applications, but only 4 data appli-

cations that definitely malware (true positive) and 1 data application that turned out to be benign (false 

positive) than the precision (P) is 0.8 as shown in Eq. (2), 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                    (2)  

where TP is True Positive and FP is False Positive. A high precision score means more accurate the 

model to classify the data applications into malware (positive) result. 

• Recall  

Recall or sensitivity measures the ratio between true positive prediction and all positive data. If the 

dataset consists 5 malware data applications from 10 data applications and the model can cassify 4 

data applications into definetly mallware applications (true positive). Then there are 1 other data appli-

cations that classifying into benign applications that turned out to be malware (false negative) than the 

recall (R) is 0.8 as shown in Eq. (3), 

𝑅 =
2×(𝑅×𝑃)

𝑅+𝑃
                   (3)  

where TP is True Positive and FN is False Negative. A high recall score means more correctly the 

model to predict mallware applications (positive) instance. 

• F1Score  

F1Score is a comparison of the weighted average precision and recall that concludes a harmonic 

means. F1Score formulas is shown in the Eq. (4), 

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2×(𝑅×𝑃)

𝑅+𝑃
              (4)  

where R is Recall and P is Precision. A high F1Score score means more correctly model to predict 

mallware applications (positive) result minority in not balance data. 

3. Results and Discussion 
The dataset consists of 50 benign applications and 50 malware applications, where each applica-

tion system-call sequence consists of 3000 sequences. Table 2 is top benign and malware Android appli-

cation that was used to be dataset. The number sequence of system calls refers to the ID/NR on the Android 

operating system using the ARM architecture processor in the arm(32-bit/EABI) table, which has 398 sys-

tem calls (0-397) as features. The number of samples in the dataset divided into training data and testing 

data. In this study, 80% was used for training, while 20% was used for testing.  

For obtaining the performance of some models, the testing will be conducted. Model testing in-cludes 

score of accuracy, precision, recall, and F1score. Accuracy testing is carried out by calculating the per-

centage of correct test results based on the labels on the test data as shown in Eq. (1). In the Scikit-learn 

library, the accuracy score() function is used to obtain accuracy values. The performance result of all model 

implementation is shown in Table 3. 

Table 2 

Top 10 Benign and Malware Android Application Packages (APK). 

No Benign Malware 

1 Tool Box Auto Photo Blur 

2 AlQuran Cool Emoji 

3 Sektch Book Phone Cleaner 

4 Smart SMS Secure VPN 

5 Smile Emoji Super Battery 

6 Al Kitab Theme Message 

7 Custom Keyboard Hyper Cleaner 

8 Battery Calibration Horoscope 

9 App Lock Same Launcher 

10 Universal PDF TikTok18 
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Table 3 

Performance comparison of model implementation. 
No. Model Accuracy Precision Recall F1 Score 
1 SVM 0.79 0.78 0.79 0.75 
2 DT 0.79 0.83 0.79 0.76 
3 KNN 0.50 0.49 0.50 0.49 
4 NB 0.69 0.65 0.68 0.65 

 

After implementing data collection according to the research plan, there are many findings that need 

to be discussed. The first finding was the use of the strace command on an Android device which actually 

required root access, so the Android device had to be rooted. Rooting the device is too risky, so data re-

trieval has to be done on the Android emulator. However, using the Android Emulator to retrieve system 

calls data is not very effective because many of the latest applications fail to install on the Android Emulator. 

The second finding was about system calls sequence condition. After retrieving system calls sequence data 

from strace command to each Android applications, there was a lot of string with the val-ue "<...", “--- SIGS-

EGV”, “+++ exited”, and etc. that doesn't match with the system calls data referring to the arm(32-bit/EABI) 

table. 3000 sequences of system calls data retrieval from each application had to be eliminated a lot due to 

inappropriate data strings.  

Based on the findings stated previously, there are potential limitations that can be used as a refer-

ence for improving subsequent research. They can influence the training results of the machine learning so 

that the classification accuracy results obtained are less than optimal. First, retrieval of system calls data 

used the Android emulator, so the application installed as a data sample was limited. This allows the dataset 

not to be formed optimally. It is recommended that future research be able to use actual Android devices 

by being able to anticipate the device rooting process. Second, method for converting system calls data 

into a sequence of numbers was done by taking 3000 lines and then cleaning out the strings that do not 

match. It is recommended to take more than 3000 data system calls so that when the data is cleaned the 

data sequence is not reduced much or methodically first clean up strings that do not match and then take 

a number of lines. And the last limitation is this research had a limited time period, making it difficult to 

develop the use of instruments in compiling the dataset. 

 
Fig. 6. Accuracy score comparison with previous research. 

From the performance result of model implementation, it could be clearly concluded from this case 

that KNN had the lowest performance. Based on Table 3, KNN method had accuracy, precision, recall, and 

F1score of 0.50, 0.49, 0.50, and 0.49 respectively. Then NB method had accuracy, precision, recall, and 

F1score of 0.69, 0.65, 0.68, and 0.65 respectively. SVM and DT had similar results in accuracy where the 

score was 0.79. The score Recall between SVM and DT also had similar result of 0.79. The difference 

between them was the result of precision and F1score, where DT had the higher result then SVM. SVM 
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obtained precision and F1score of 0.78 and 0.75 respectively, meanwhile DT obtained 0.83 and 0.76. It 

means that DT was able to predict positive results or benign Android applications more accu-rate than SVM.  

By obtaining classification test results and their comparisons, these results need to be compared with 

the results of previous research. In this article, it will compare the classification accuracy results with the 

accuracy of previous malware detection research which purely used dynamic analysis in the form of system 

calls including (Anshori et al., 2019) and (Zhang et al., 2022). Fig. 6 is a comparison of accura-cy score of 

this research with previous research based on four methods including SVM, DT, KNN, and NB where in 

general the various methods used by (Zhang et al., 2022) have high accuracy with the highest accuracy 

score being the SVM method with a score reaching 99.0%. Furtermore based on table, the highest accuracy 

score in (Anshori et al., 2019) are in the SVM and K-NN method at 71.67%. While the highest accuracy 

score in this study were SVM and DT with a percentage of 79.0%.  

From the results of comparison with previous research, this study has an accuracy score that is not 

as good as (Zhang et al., 2022) because the dataset is not optimally formed due to the system calls data 

not fully amounting to 3000 strings. However, the results of the classification accuracy score from several 

methods exceed (Anshori et al., 2019) except KNN method because this study uses of features refers to 

arm(32-bit/EABI) table with a total of 398 features. In general, the results of the classification accuracy score 

from the three studies that being compared, SVM is the method with the highest accuracy based on the 

three studies that have been carried out. Therefore, SVM method is suitable for classifying An-droid malware 

with dynamic analysis based on system calls. 

4. Conclusions 
This initial research is part of the other research that has a purpose to develop a malware detec-tion 

system for Android application. From the research that has been conducted, it can be concluded that the 

KNN method has the lowest performance to detect Android malware applications with accuray only 0.50. 

SVM and DT model have similar accuracy and recall result of 0.79 and 0.75 respectively, but DT obtained 

higher precision and F1score of 0.83 and 0.76 respectively. Although in this study the classi-fication perfor-

mance of DT is better than SVM, based on comparison with the results of previous re-search, SVM is a 

suitable method for Android malware detection based on system calls data. It is proven by the results of 

research comparisons that the SVM method is always the method with the highest accu-racy score among 

other methods. For the next research SVM method can be used to develop a malware detection system for 

Android application. Suggestions that can be given for the next research include increasing accuracy and 

expanding the dataset. Furtermore data collection must be taken from the running applications in real device 

to give result in relevant environment, not just an Android emulator. 
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