
Journal of Information Technology and Cyber Security 2(1) January 2024: 15-24 EISSN 2987-386X | PISSN 2987-3878

DOI: 10.30996/jitcs.10511

Research Article Alhamri et al.

© 2024 The Author(s). Published by Department of Information Systems and Technology, Universitas 17 Agustus 1945 Surabaya,

Indonesia. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/), which

allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations

are licensed under the identical terms.

Supervised Learning Methods Comparison for Android Malware

Detection Based on System Calls Referring to ARM (32-bit/EABI)

Table

Rinanza Zulmy Alhamri 1, , Toga Aldila Cinderatama 2, , Kunti Eliyen 3,*, and Abidatul

Izzah 4,

1,2,3,4 Department of Information Technology, Politeknik Negeri Malang, Indonesia
∗ Corresponding author: kunti.eliyen@polinema.ac.id

Received: 12 February 2024 Revised: 13 March 2024

Accepted: 21 March 2024 Available online: 20 June 2024

To cite this article: Alhamri, R. Z., Cinderatama, T. A., Eliyen, K., & Izzah, A. (2024). Supervised Learning Methods

Comparison for Android Malware Detection Based on System Calls Referring to ARM (32-bit/EABI) Table. Journal of

Information Technology and Cyber Security. 2(1), 15-24. https://doi.org/10.30996/jitcs.10511

Abstract
Android malware detection research is a topic that is still being developed. From all the detection tech-

niques developed, dynamic analysis methods have become interesting because they trace the suspect

application system calls. Based on the system calls, by utilizing machine learning, the suspect application

can be classified as malware or benign. Comparing the machine learning methods is im-portant to deter-

mine what method is best to support malware detection. This article aims to explain more clearly and

simply the way to conduct Android malware detection based on system calls step by step using classifi-

cation. Furthermore, it presents the system calls sequence conversion referring to the arm(32-bit/EABI)

table, which has 398 system calls (0-397) as features. It will provide a compari-son of several supervised

machine-learning methods for classifying Android applications. This initial research is part of the other

research that has the purpose of developing a malware detection system based on an Android applica-

tion. This research can be used to develop the best machine learning to classify malware applications

using a Support Vector Machine (SVM), Decision Tree (DT), K-Nearest Neighbour (KNN), and Naive

Bayes (NB). The result can be concluded that the KNN method has the lowest performance in detecting

Android malware apps, with an accuracy of only 0.50. In comparison, the NB method has an accuracy

of only 0,69. SVM and DT models have similar accuracy and recall results of 0.79 and 0.75, respectively,

but DT obtained higher precision and scores of 0.83 and 0.76, respectively. Although in this study, the

classification performance of DT is better than SVM, based on comparison with the results of previous

research, SVM is a suitable method for Android malware de-tection based on system calls. It is proven

by the results of research comparisons that the SVM method is always the method with the highest ac-

curacy score among other methods. For the next research, the SVM method can be used to develop a

malware detection system for Android applications.

Keywords: Android, Decision Tree, Machine Learning, Malware Detection, Supervised Learning, Naive

Bayes.

1. Introduction
Malicious software or malware is malicious software criminals develop to weaken the host's hard-

ware. Currently, there are many malware applications with various impacts for Android applications es-

pecially. One of the impacts often encountered and often becomes a user issue is the decreased perfor-

mance of the device itself, such as a device that runs much slower than before. This is because malware

running in the background causes high CPU (Central Processing Unit) load, low storage capacity, and more

significant memory usage (Negi et al., 2021; Selvaganapathy et al., 2021). Malware has several types, and

their respective effects include adware, which creates lots of popup ads; spyware, which can monitor user

activity on mobile devices; ransomware, which can lock data; and trojans, which attach to official applica-

tions but, when installed, can damage the system (Chandini et al., 2019).

https://issn.brin.go.id/terbit/detail/20221127170824909
https://issn.brin.go.id/terbit/detail/20230207582271632
https://doi.org/10.30996/jitcs.10511
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.30996/jitcs.10511
https://orcid.org/0009-0001-2404-314X
https://orcid.org/0000-0002-3622-8969
https://orcid.org/0000-0003-2918-3114

Supervised Learning Methods . . . Journal of Information Technology and Cyber Security 2(1) January 2024: 15-24

Many previous studies have been carried out to develop malware detection for Android appliac-tions

in Android mobile devices. Both developing methods for detecting and implementing detection ap-plica-

tions. Much research has been carried out in terms of implementing detection methods, such as us-ing the

Support Vector Machine (SVM) method based on system call activity from applications suspected of being

malware (Akbi et al., 2018). They provided the performance of SVM to classify the Android apps based on

its system calls. Furthermore, malware detection has been carried out using SVM classification, which has

been improved using the Decision Tree (DT) method to increase detection accuracy based on the condition

of the Android mobile device (Yang et al., 2020). In the same way, they provided the per-formance of SVM

that improved using DT to classify Android applications based on its system calls, Application Programming

Interface (API), and permission called Dalvik Instruction. K-Nearest Neighbour (KNN) and Naive Bayes (NB)

method also have been conducted to classify Android applica-tions using static or dynamic detection based

on requested permissions, system API calls, and the activity (Arslan & Yurttakal, 2020; Pang & Bian, 2019).

Meanwhile, in terms of implementing the detection application, researchers have also conducted

various studies to apply malware detection methods to Android mobile devices. The majority of malware

detection applications are implemented as agent applications to collect data on the device, then the data is

sent to a server which acts as a detection model. Malware detection based on activities and conditions in

applications and systems is called dynamic detection, while malware detection that examines the pro-gram

contents of suspected applications is called static detection (Bhatia & Kaushal, 2017; Malik, 2019). A static

malware detection application based on Android has been implemented as an agent (Habibi et al., 2017;

Jusoh et al., 2021). As a static detection, the implementation was more complex than dynam-ic detection.

The static detection depends with fixed system and (Habibi et al., 2017) utilized Kaspersky system to im-

plement static detection. Then the application of dynamic malware detection applications has been devel-

oped with a local client-server topology, both detections based on device resource condi-tions (Ribeiro et

al., 2020) and based on system call activity (Zhang et al., 2022). Also hybrid method can be used to detect

Android malware applications by integrating the features after static and dynamic anal-yses (Dhalaria &

Gandotra, 2021).

Researchers have also compared the performance of each machine-learning method in detecting

malware. Each performance depends on what data reseaerchers use to classify. The machine learning

method can support malware detection of an Android application, both based on system call activity from

the application and the condition of the Android device. A comparison of machine learning methods has

been carried out for Android malware classification based on system calls (Anshori et al., 2019). The meth-

ods compared include SVM, NB, DT, Random Forest, Log Regression, and KNN. It used 19 attrib-utes,

consist of 18 features only and 1 class category. The result said that Random Forest method had the highest

accuracy results with a percentage of 76%. Ribeiro et al. (2020) compared the machine learning methods

based on condition of the Android device. The dataset was collected manually and the result said that SVM

was the best method with 99.83% accuracy using proposed Host-based Intrution Detection System.

Hadiprakoso et al. (2022) also compared the machine learning method based on the condition of the An-

droid device using DREBIN dataset. It resulted SVM was the best method with 96.94% accuracy. Hybrid

analysis also have been carried out by combining static detection like condition of de-vice and dynamic

detection like API call command using several deep learning methods (Hadiprakoso et al., 2021). The result

said that Long Short-Term Memory (LSTM) model was the best method with 98.7% accuracy. Pure dynamic

malware detection using Android device system call has been carried out by comparing several mechine

learning methods (Zhang et al., 2022).The result said that Multi Layer Per-ceptron (MLP) was the best

method with 99.34% accuracy.

Comparing the machine learning methods is important to determine what method is best to sup-port

malware detection. This research was conducted by referring Zhang et al. (2022) where utilizing Android

applications system call as the subject to be analyzed. This article focuses to explain more clearly and

simpler the way to conduct the Android malware detection based on system call step by step. Fur-thermore,

this article presents the system calls sequence conversion referring to the arm(32-bit/EABI) table, which

has 398 system calls (0-397) as features. This is the novelty of this research as a first step before creating

a larger system for implementing and deploying Android-based malware detection appli-cations. For sure,

it will be provided the comparison of several supervised machine learning methods for classifying the An-

droid application. The purpose of this research is to provide evidence of the best surpervised machine

learning method for detecting Android malware based on its system calls. This arti-cle is part of the research

to develop Android malware detection system that utilizing machine learning with Python based as server,

cloud database Firebase as data intermediary, and Android application as a client interface. Later then, the

Supervised Learning Methods . . . Journal of Information Technology and Cyber Security 2(1) January 2024: 15-24

result will be used to determine what supervised machine learning meth-ods that best to support the Android

malware detection system.

2. Methods
The development of supervised learning machines using the Python programming language where

Python has several libraries to developing machine learning. Development is carried out in some sub stages

including Data Collection, Model Implementation, and Model Testing as shown in the Fig. 1.

Fig. 1. Research method.

2.1. Data collection
The purpose of data collection is to collect system call data from Android apps as a dataset. Refer-

ring to Zhang et al. (2022), it is needed 3000 system call per apps to get the best result. To validate the

benign or malware apps then it is used virustotal.com to give label to the state of Android apps. The data

collection consists of 50 benign apps and 50 malware apps. To make the data collection safer and more

efficeient, then it is used Android virtualization using Genymotion and Android Studio emulator. To pro-duce

natural 3000 system calls from the Android application, then it is used automatic and random stress-test

application using The Monkey.

How to produce the dataset for detecting Android malware as shown in Fig. 1 is based on some

Android malware detection frameworks. Manzil and S (2023) stated in DynaMalDroid framework, dataset

conducted from utilizing strace command and Monkey tool of the benign or malware Android application.

As well as that, Shakya and Dave (2022) stated that data collection used strace command to achieve the

system calls and MonkeyRunner for conditioning the Android device run the apps automatically. Data col-

lection was conducted to obtain a dataset. The dataset in question contains system-call sequence data

from Android applications (both benign and malware), which have been converted into a series of numbers.

Fig. 2 shows the stages in creating a dataset to develop a machine learning model.

Fig. 2. Data collection stages.

Based on Fig. 2, the following is a detailed explanation about dataset creation.

1) Application Determination

Benign applications are easy to obtain by visiting Google Play, which has been verified for security.

Meanwhile, malware applications were obtained from information on the internet and then verified as

unsafe by checking the .app files on virustotal.com. If the results of checking the application file are

verified as dangerous (a warning displayed in red), then the application is considered a malware appli-

cation.

2) Taking System Calls

The applications that were classified as benign or malware all had their system-call data taken while

they were running on an Android device. A simulation environment with the Genymotion and An-droid

Studio emulator is used to retrieve system-call data. The following are detailed steps for re-trieving

system-call data for a sample application.

• The .app application is installed on the Genymotion and Android Studio emulator device, then runs

the application.

• In the adb shell terminal running on the host operating system, in this case, Ubuntu 22.04.3, the

shell command searches for the PID and package name of the application.

3) Once the package name is known, the application in question will be given random commands au-

tomatically (random stressed-test) using the Monkey application.

4) As soon as the stressed test command is executed, the strace shell command is activated on the PID

of the application in question, and the strace results are converted to a txt format file. Strace was

carried out for one minute, which resulted in more than 3000 documented system calls.

5) The results of the strace in the form of a .txt file are stored in the Android device emulator so that they

can be retrieved to be stored on the host PC.

Supervised Learning Methods . . . Journal of Information Technology and Cyber Security 2(1) January 2024: 15-24

6) The result of system call data raw shown in Fig. 3.

Fig. 3. System call resut data raw.

7) Sequence Conversion

After obtaining the system call data in the application in the form of a .txt file, the system call se-quence

data is converted into a sequence of numbers. The number sequence of system calls refers to the

ID/NR on the Android operating system using the ARM architecture processor in the arm(32-bit/EABI)

table, which has 398 system calls (0-397) as features. The conversion is done using the Python pro-

gramming language. Utilizing the regular expression and csv libraries, the system call da-ta in the .txt

file can be taken as a system call type to be converted into a number series and con-verted into a .csv

format file. Following are the detailed conversion steps:

• The input is in the form of .txt and the system call type were taken per line using the reg-ular ex-

pression library and then stored in the data list.

• Take 3000 system calls by doing list slicing based on the list data previously obtained.

• The data list that stores system call types is converted to ID/NR system call numbers on ARM ar-

chitecture processors utilizing regular expression sub functions.

• The list that stores the number sequence of system calls is cleaned of spaces, non-alphabetical

characters, and strings that do not match the name of the type of system call using the replace

function.

• The list of results of cleaning foreign characters or strings that do not match the type of system call

is converted to a .csv file using the library csv writer function. The results of the sys-tem call number

sequence data are as shown in Fig. 4.

Fig. 4. System call sequence conversion results.

8) Labelling Since the dataset is used to train Supervised Machine Learning, there must be a classifi-

cation label on the dataset. Merging the converted .csv files for each application, both benign and

malware, is put together in a .csv file manually with the attributes of the application name, classifica-

tion label, and the results of the strace as shown in Fig. 5.

Fig. 5. Results of dataset creation.

2.2. Model implementation
After the dataset has been obtained, then stage model implementation is conducted. Model im-ple-

mentation aims to implement some supervised machine learning methods using Python programming lan-

guage. The machine learning methods that were implemented in this research include SVM, DT, KNN, and

NB. The purpose of the model implementation is to classify dataset into supervised results include benign

apps or malware apps. Using the library of scikit-learn, supervised machine learning can be con-ducted

easily.

Supervised machine learning was developed using the Python programming language in this re-

search. By utilizing the Scikit-learn library, SVM, DT, KNN, and NB classifier can be used. Machine learn-

Supervised Learning Methods . . . Journal of Information Technology and Cyber Security 2(1) January 2024: 15-24

ing was developed to classify Android applications as benign or malware based on system call data. The

following are detailed steps in developing supervised machine learning using the SVM, DT, KNN, and NB

method until model accuracy testing is carried out.

1) Reading Dataset

The .csv format dataset contains system call sequences. Using the Pandas library, the .csv format file

can be read, and you can choose which columns to read.

2) Splitting Dataset

The number of samples in the dataset divided into training data and testing data. In this study, 80%

was used for training, while 20% was used for testing. Ratio 80/20 for splitting data into training and

testing is common division. Furtermore based on Gholamy et al. (2018) ratio 80/20 can avoid over-

fitting and overestimate accuracy empirically. This section also differentiates between reading the da-

taset in the label column and the system call column.

3) Feature Extraction

Feature extraction is applied to assign a token to each system call number in the dataset (tokeniza-

tion). In this research, the CountVectorizer method is used, which can transform system call se-

quences into vector data (vectorization). Apart from providing token values and vector transfor-

mations, the countvectorizer also counts the number of occurrences of system call numbers in the

dataset. By carrying out feature extraction, it will help improve the performance accuracy of the model

implementation.

4) Machine Learning Model

The application of the machine learning model used the SVM, DT, KNN, and NB. In the Scikit-learn

library, the SVM uses SVC method.

• SVM - This research uses a SVM linear kernel type because the classification is carried out in binary.

It was used default hyperparameters tuning including C = 1.0, Degree = 3, and Gamma using scale

type.

• DT - Whereas the DT used DecisionTreeClassifier method. Default hyperparameters was used for

tuning including Criterion = ‘gini’ and Splitter = ‘best’. KNN - Then the KNN used KNeighborsClas-

sifier method. It was used default hyperparameters also including n_neighbors = 5, Weight using

uniform type, and Algorithm = ‘auto’. Below is the KneighborsClassifier method used in the program.

• NB – The last method used NB method with GaussianNB. NB method used default hyperpa-rame-

ters tuning including Priors = ‘None’ and var_smoothing = 1e-9. Below is the GaussianNB method

used in the program.

2.3. Model testing
Model testing aims to obtain the performance of each machine learning method for classifying the

data. Still by using scikit-learning library, the model testing can be done. Table 1 below is used to explain

various terms for evaluating classification in this malware detection cases.
Table 1

Example of malware detection evaluation.

No. Application (app) Real Label Classification Result

1 Benign Benign

2 Benign Benign

3 Benign Benign

4 Benign Benign

5 Benign Malware

6 Malware Benign

7 Malware Malware

8 Malware Malware

9 Malware Malware

10 Malware Malware

From Teble 1 can be obtained:

• True Positive: Malware classification results are according to the label = 4,

• True Negative: Benign classification results are according to the label = 4,

• False Positive: Malware classification results are not according to the label = 1, and

• False Negative: Benign classification results are not according to the label = 1.

Based on the terms, the testing includes:

• Accuracy

Supervised Learning Methods . . . Journal of Information Technology and Cyber Security 2(1) January 2024: 15-24

Accuracy ia the precentage of labels that the model successfully predicted. If the model can classify 8

appliacations accurately from 10 data applications than accuracy (A) is 0.8 as shown in Eq. (1),

𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1)

where TP is True Positive, TN is True Negative, FP is False Positive, and FN is False Negative. A high

accuracy score means more accurate the model to classify Android applications whether mal-ware or

benign application generally

• Precision

Precision measures the ratio between true positive prediction and all positive result prediction. If the

model can classify 5 data applications into malware from 10 data applications, but only 4 data appli-

cations that definitely malware (true positive) and 1 data application that turned out to be benign (false

positive) than the precision (P) is 0.8 as shown in Eq. (2),

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2)

where TP is True Positive and FP is False Positive. A high precision score means more accurate the

model to classify the data applications into malware (positive) result.

• Recall

Recall or sensitivity measures the ratio between true positive prediction and all positive data. If the

dataset consists 5 malware data applications from 10 data applications and the model can cassify 4

data applications into definetly mallware applications (true positive). Then there are 1 other data appli-

cations that classifying into benign applications that turned out to be malware (false negative) than the

recall (R) is 0.8 as shown in Eq. (3),

𝑅 =
2×(𝑅×𝑃)

𝑅+𝑃
 (3)

where TP is True Positive and FN is False Negative. A high recall score means more correctly the

model to predict mallware applications (positive) instance.

• F1Score

F1Score is a comparison of the weighted average precision and recall that concludes a harmonic

means. F1Score formulas is shown in the Eq. (4),

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2×(𝑅×𝑃)

𝑅+𝑃
 (4)

where R is Recall and P is Precision. A high F1Score score means more correctly model to predict

mallware applications (positive) result minority in not balance data.

3. Results and Discussion
The dataset consists of 50 benign applications and 50 malware applications, where each applica-

tion system-call sequence consists of 3000 sequences. Table 2 is top benign and malware Android appli-

cation that was used to be dataset. The number sequence of system calls refers to the ID/NR on the Android

operating system using the ARM architecture processor in the arm(32-bit/EABI) table, which has 398 sys-

tem calls (0-397) as features. The number of samples in the dataset divided into training data and testing

data. In this study, 80% was used for training, while 20% was used for testing.

For obtaining the performance of some models, the testing will be conducted. Model testing in-cludes

score of accuracy, precision, recall, and F1score. Accuracy testing is carried out by calculating the per-

centage of correct test results based on the labels on the test data as shown in Eq. (1). In the Scikit-learn

library, the accuracy score() function is used to obtain accuracy values. The performance result of all model

implementation is shown in Table 3.

Table 2

Top 10 Benign and Malware Android Application Packages (APK).

No Benign Malware

1 Tool Box Auto Photo Blur

2 AlQuran Cool Emoji

3 Sektch Book Phone Cleaner

4 Smart SMS Secure VPN

5 Smile Emoji Super Battery

6 Al Kitab Theme Message

7 Custom Keyboard Hyper Cleaner

8 Battery Calibration Horoscope

9 App Lock Same Launcher

10 Universal PDF TikTok18

Supervised Learning Methods . . . Journal of Information Technology and Cyber Security 2(1) January 2024: 15-24

Table 3

Performance comparison of model implementation.
No. Model Accuracy Precision Recall F1 Score
1 SVM 0.79 0.78 0.79 0.75
2 DT 0.79 0.83 0.79 0.76
3 KNN 0.50 0.49 0.50 0.49
4 NB 0.69 0.65 0.68 0.65

After implementing data collection according to the research plan, there are many findings that need

to be discussed. The first finding was the use of the strace command on an Android device which actually

required root access, so the Android device had to be rooted. Rooting the device is too risky, so data re-

trieval has to be done on the Android emulator. However, using the Android Emulator to retrieve system

calls data is not very effective because many of the latest applications fail to install on the Android Emulator.

The second finding was about system calls sequence condition. After retrieving system calls sequence data

from strace command to each Android applications, there was a lot of string with the val-ue "<...", “--- SIGS-

EGV”, “+++ exited”, and etc. that doesn't match with the system calls data referring to the arm(32-bit/EABI)

table. 3000 sequences of system calls data retrieval from each application had to be eliminated a lot due to

inappropriate data strings.

Based on the findings stated previously, there are potential limitations that can be used as a refer-

ence for improving subsequent research. They can influence the training results of the machine learning so

that the classification accuracy results obtained are less than optimal. First, retrieval of system calls data

used the Android emulator, so the application installed as a data sample was limited. This allows the dataset

not to be formed optimally. It is recommended that future research be able to use actual Android devices

by being able to anticipate the device rooting process. Second, method for converting system calls data

into a sequence of numbers was done by taking 3000 lines and then cleaning out the strings that do not

match. It is recommended to take more than 3000 data system calls so that when the data is cleaned the

data sequence is not reduced much or methodically first clean up strings that do not match and then take

a number of lines. And the last limitation is this research had a limited time period, making it difficult to

develop the use of instruments in compiling the dataset.

Fig. 6. Accuracy score comparison with previous research.

From the performance result of model implementation, it could be clearly concluded from this case

that KNN had the lowest performance. Based on Table 3, KNN method had accuracy, precision, recall, and

F1score of 0.50, 0.49, 0.50, and 0.49 respectively. Then NB method had accuracy, precision, recall, and

F1score of 0.69, 0.65, 0.68, and 0.65 respectively. SVM and DT had similar results in accuracy where the

score was 0.79. The score Recall between SVM and DT also had similar result of 0.79. The difference

between them was the result of precision and F1score, where DT had the higher result then SVM. SVM

Supervised Learning Methods . . . Journal of Information Technology and Cyber Security 2(1) January 2024: 15-24

obtained precision and F1score of 0.78 and 0.75 respectively, meanwhile DT obtained 0.83 and 0.76. It

means that DT was able to predict positive results or benign Android applications more accu-rate than SVM.

By obtaining classification test results and their comparisons, these results need to be compared with

the results of previous research. In this article, it will compare the classification accuracy results with the

accuracy of previous malware detection research which purely used dynamic analysis in the form of system

calls including (Anshori et al., 2019) and (Zhang et al., 2022). Fig. 6 is a comparison of accura-cy score of

this research with previous research based on four methods including SVM, DT, KNN, and NB where in

general the various methods used by (Zhang et al., 2022) have high accuracy with the highest accuracy

score being the SVM method with a score reaching 99.0%. Furtermore based on table, the highest accuracy

score in (Anshori et al., 2019) are in the SVM and K-NN method at 71.67%. While the highest accuracy

score in this study were SVM and DT with a percentage of 79.0%.

From the results of comparison with previous research, this study has an accuracy score that is not

as good as (Zhang et al., 2022) because the dataset is not optimally formed due to the system calls data

not fully amounting to 3000 strings. However, the results of the classification accuracy score from several

methods exceed (Anshori et al., 2019) except KNN method because this study uses of features refers to

arm(32-bit/EABI) table with a total of 398 features. In general, the results of the classification accuracy score

from the three studies that being compared, SVM is the method with the highest accuracy based on the

three studies that have been carried out. Therefore, SVM method is suitable for classifying An-droid malware

with dynamic analysis based on system calls.

4. Conclusions
This initial research is part of the other research that has a purpose to develop a malware detec-tion

system for Android application. From the research that has been conducted, it can be concluded that the

KNN method has the lowest performance to detect Android malware applications with accuray only 0.50.

SVM and DT model have similar accuracy and recall result of 0.79 and 0.75 respectively, but DT obtained

higher precision and F1score of 0.83 and 0.76 respectively. Although in this study the classi-fication perfor-

mance of DT is better than SVM, based on comparison with the results of previous re-search, SVM is a

suitable method for Android malware detection based on system calls data. It is proven by the results of

research comparisons that the SVM method is always the method with the highest accu-racy score among

other methods. For the next research SVM method can be used to develop a malware detection system for

Android application. Suggestions that can be given for the next research include increasing accuracy and

expanding the dataset. Furtermore data collection must be taken from the running applications in real device

to give result in relevant environment, not just an Android emulator.

5. CRediT Authorship Contribution Statement
Rinanza Zulmy Alhamri: Conceptualization, Data curation, Formal Analysis, Funding acquisition, In-

vestigation, and Methodology. Toga Aldila Cinderatama: Project administration and Writing – original draft.

Kunti Eliyen: Resources, Software, Visualization, and Writing – review & editing. Abida-tul Izzah: Supervision

and validation.

6. Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships

that could have appeared to influence the work reported in this paper.

7. Acknowledgments
The authors would like to thank the anonymous referees for their helpful comments and suggestions.

8. Data Availability
System calls list of the ARM(32-bit/EABI) table available in https://chromium.googlesource.com/chro-

miumos/docs/+/master/constants/syscalls.md

9. Funding
This research is funded by Politeknik Negeri Malang, Indonesia with DIPA fund number SP DIPA

023.18.2.677606/2023 and Grant number 5625/PL2.1/HK/2023.

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md
https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md

Supervised Learning Methods . . . Journal of Information Technology and Cyber Security 2(1) January 2024: 15-24

10. References
Akbi, D. R., Herlambang, S., Basuki, S., & Sari, Z. (2018). Deteksi Malware Android Berdasarkan System

Call Menggunakan Algortima Support Vector Machine. Seminar Nasional Teknologi Dan Rekayasa

(SENTRA).

Anshori, M., Mar’i, F., & Bachtiar, F. A. (2019). Comparison of Machine Learning Methods for Android

Malicious Software Classification based on System Call. 2019 International Conference on

Sustainable Information Engineering and Technology (SIET), 343–348.

https://doi.org/10.1109/SIET48054.2019.8985998

Arslan, R. S., & Yurttakal, A. H. (2020). K-Nearest Neighbour Classifier Usage for Permission Based

Malware Detection in Android. Icontech Journal of Innovative Surveys, Engineering & Technology,

4(2), 15–27. https://doi.org/10.46291/ICONTECHvol4iss2pp15-27

Bhatia, T., & Kaushal, R. (2017, June). Malware detection in android based on dynamic analysis. 2017

International Conference on Cyber Security And Protection Of Digital Services (Cyber Security).

https://doi.org/10.1109/CyberSecPODS.2017.8074847

Chandini, S. B., Rajendra, A. B., & Nitin, S. G. (2019). A Research on Different Types of Malware and

Detection Techniques. International Journal of Recent Technology and Engineering, 8(2S8), 1792–

1797. https://doi.org/10.35940/ijrte.B1155.0882S819

Dhalaria, M., & Gandotra, E. (2021). A Hybrid Approach for Android Malware Detection and Family

Classification. International Journal of Interactive Multimedia and Artificial Intelligence, 6(6), 174–188.

https://doi.org/10.9781/ijimai.2020.09.001

Gholamy, A., Kreinovich, V., & Kosheleva, O. (2018). Why 70/30 or 80/20 Relation Between Training and

Testing Sets: A Pedagogical Explanation. International Journal of Intelligent Technologies and Applied

Statistics, 11(2), 105–111. https://doi.org/10.6148/IJITAS.201806_11(2).0003

Habibi, M., Ismail, S. J., & Sularsa, A. (2017). Implementation of Malware Detection Service on Android. E-

Proceedings of Applied Science, 3(3), 1839–1847.

Hadiprakoso, R. B., Aditya, W. R., & Pramitha, F. N. (2022). Analisis Statis Deteksi Malware Android

Menggunakan Algoritma Supervised Machine Learning. Cyber Security Dan Forensik Digital, 5(1), 1–

5. https://doi.org/10.14421/csecurity.2022.5.1.3116

Hadiprakoso, R. B., Qomariasih, N., & Yasa, R. N. (2021). Identifikasi Malware Android Menggunakan

Pendekatan Analisis Hibrid dengan Deep Learning. Jurnal Teknologi Informasi Universitas Lambung

Mangkurat, 6(2), 77–84. https://doi.org/10.20527/jtiulm.v6i2.82

Jusoh, R., Firdaus, A., Anwar, S., Osman, M. Z., Darmawan, M. F., & Razak, M. F. A. (2021). Malware

detection using static analysis in Android: a review of FeCO (features, classification, and obfuscation).

PeerJ. Computer Science, 7. https://doi.org/10.7717/peerj-cs.522

Malik, S. (2019). Anomaly based Intrusion Detection in Android Mobiles: A Review. International Journal of

Engineering Research and Technology, 8(10), 698–710. www.ijert.org

Manzil, H. H. R., & S, M. N. (2023, December 28). DynaMalDroid: Dynamic Analysis-Based Detection

Framework for Android Malware Using Machine Learning Techniques. 2022 International Conference

on Knowledge Engineering and Communication Systems (ICKES).

https://doi.org/10.1109/ICKECS56523.2022.10060106

Negi, C., Mishra, P., Chaudhary, P., & Vardhan, H. (2021). A Review and Case Study on Android Malware:

Threat Model, Attacks, Techniques and Tools. Journal of Cyber Security and Mobility, 10(1), 231–

260. https://doi.org/10.13052/jcsm2245-1439.1018

Pang, J., & Bian, J. (2019). Android Malware Detection Based on Naive Bayes. 2019 IEEE 10th International

Conference on Software Engineering and Service Science (ICSESS), 10, 483–486.

https://doi.org/10.1109/ICSESS47205.2019.9040796

Ribeiro, J., Saghezchi, F. B., Mantas, G., Rodriguez, J., Shepherd, S. J., & Abd-Alhameed, R. A. (2020). An

Autonomous Host-Based Intrusion Detection System for Android Mobile Devices. Mobile Networks

and Applications, 25, 164–172. https://doi.org/10.1007/s11036-019-01220-y

Selvaganapathy, S., Sadasivam, S., & Ravi, V. (2021). A Review on Android Malware: Attacks,

Countermeasures and Challenges Ahead. Journal of Cyber Security and Mobility, 10(1), 177–230.

https://doi.org/10.13052/jcsm2245-1439.1017

Shakya, S., & Dave, M. (2022). Analysis, Detection, and Classification of Android Malware using System

Calls. https://doi.org/10.48550/arXiv.2208.06130

Yang, M., Chen, X., Luo, Y., & Zhang, H. (2020). An Android Malware Detection Model Based on DT-SVM.

Security and Communication Networks. https://doi.org/10.1155/2020/8841233

Supervised Learning Methods . . . Journal of Information Technology and Cyber Security 2(1) January 2024: 15-24

Zhang, X., Mathur, A., Zhao, L., Rahmat, S., Niyaz, Q., Javaid, A., & Yang, X. (2022). An Early Detection of

Android Malware Using System Calls based Machine Learning Model. Proceedings of the 17th

International Conference on Availability, Reliability and Security, 1–9.

https://doi.org/10.1145/3538969.3544413

