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Abstract 
Indonesia is rich in ethnic and cultural diversity, each reflected in its unique linguistic characteristics. One 

way to preserve the Javanese language is by conducting research on its dialects. This study aims to 

classify three main dialects in Java Island—East Java, Central Java, and West Java—using text data from 

online sources. The classification process includes preprocessing (tokenizing, case folding, and word 

weighting), data balancing with the Synthetic Minority Oversampling Technique (SMOTE), and 

classification using the K-Nearest Neighbor (K-NN) algorithm. This study highlights the importance of 

dialect recognition in supporting the preservation of the Javanese language and the development of 

linguistic technology applications. Testing using 10-fold cross-validation showed the best performance at 

𝑘 = 2, with an accuracy of 94.05%, precision of 95.83%, and recall of 94.44%. These findings 

significantly support computational linguistics research and the preservation of regional languages. 

Keywords: case folding, Javanese dialect, K-Nearest Neighbor, Natural Langugae Processing, Synthetic 

Minority Oversampling Technique, tokenizing. 

1. Introduction 
Language is the primary means of human communication, and it has variations in form and meaning 

depending on time, social group, and geographical location (Junaidi, Yani, & Rismayeti, 2016). In Indonesia, 

linguistic diversity is one of the characteristics, with 718 languages spread throughout the archipelago. 

Javanese has the most speakers, around 68.2 million people (Ethnologue, 2013). This language variation 

arises due to cultural, social, and geographical influences. 

As one of the cultural heritages, Javanese has 12 dialect variations, including East Javanese, Central 

Javanese, and West Javanese dialects (Ethnologue, 2013). Several dialects are now facing the threat of 

extinction due to the shift to the use of Indonesian and foreign languages (Pamungkas & Hidayatullah, 

2021). This decline affects local identity and the sustainability of regional culture. Therefore, research related 

to dialects is important to support language preservation. 

Previous studies have examined the linguistic aspects of Javanese. For example, research by 

Ardhana (2018) classifies Javanese language levels such as ngoko, krama madya, and krama inggil using 

Multinomial Naïve Bayes (Ardhana, 2018). Meanwhile, Florensa (2021) utilized clustering-based K-Nearest 

Neighbor (K-NN) for Minang dialect classification, with the best accuracy reaching 88.3% (Irfa, Adiwijaya, 

& Mubarok, 2018). However, similar studies on Javanese dialects are still limited. 

The K-NN algorithm is known as a reliable method for text classification. This algorithm works based 

on the distance between unknown and learning data, producing accurate predictions (Ardhana, 2018). 

Purnomo (2021) used K-NN to identify regional accents with an accuracy of up to 87.5%. In the context of 

this study, K-NN was chosen to classify the three main dialects of Javanese. This research approach also 

involves the Synthetic Minority Oversampling Technique (SMOTE) technique to handle data imbalance. This 

technique helps improve the accuracy of classification results by expanding the number of samples in mino- 
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Fig. 1. Research flow diagram.  

 

Table 1 

Search results with keyword: East Java dialect. 

Dialect Search Results with Keyword 

East Javanese 3,820 

Osing 1,510 

Tengger 2,570 

Solo-Yogyakarta 3,570 

 

Table 2 

Search results with keyword: Central Java dialect. 

Dialect Search Results with Keyword 

Pekalongan 3,880 

Solo-Yogyakarta 3,570 

Tegal 13,900 

Banyumas 8,480 

Wonosobo 299 

 

Table 3 

Search results with keyword: West Java dialect 

Dialect Search Results with Keyword 

Pantai Utara 1,870 

Cirebon 6,510 

Ciamis 256 

 

rity data groups (Palinoan, 2014). This is relevant due to the frequently uneven distribution of dialect data. 

This study aims to fill the gap in the study of Javanese dialects by applying the K-NN algorithm and 

the SMOTE technique. In addition to contributing to preserving the Javanese language, this study is also 

expected to open up opportunities for other linguistic technology applications, such as speech recognition 

or Natural Language Processing (NLP) in the context of local culture.  

2. Methods 
The study has several stages: data collection, preprocessing, word weighting, classification, and 

evaluation, as shown in Fig. 1. This study began with data collection on online sites with various sources. 

Then, the data is processed in the preprocessing stage to be used as initial data for the next stage. After 

the data is ready, the word weighting process uses Term Frequency (TF). The classification process is 

carried out using the K-Nearest Neighbor (K-NN) method, and evaluation is performed using 10-fold cross-

validation to assess the accuracy of the algorithm performance results. 

2.1. Data Collection 

The data collection method used in this study is collecting secondary data via the internet using 

Universal search. This study is called "blended/federated search results" (Sarwono, 2012). Sources and 

how to access them have a vital role in data quality (Kumar & Paul, 2016). So, to determine the accuracy 

of the data that has been collected, the author validates it with a linguist. Data retrieval is done by separating 

data based on dialect and retrieval source. Each dialect search is from one source, and several words and 

sentences are obtained. These words and sentences are entered into one Ms. Word document with the 

format (.docx) and saved with a name based on the dialect. 

Furthermore, the number of words and sentences collected is calculated to ensure that the data 

balance between dialects can be adequately controlled. Because of the many dialects in Java, this study 

will only use dialects based on their distribution. These dialects are spread across East Java, West Java, 

and Central Java. To determine which dialects to use as a dataset, a survey was conducted by searching 

for "keywords" on Google to determine the most popular dialects in each region. The search was conducted 

using specific keywords for each dialect to calculate the search results for each dialect. For example, 

searching for the Tegal dialect using the keyword "Tegal dialect" produced 13,900 results. 

Data Collection Preprocessing
Word 

Weighting
Classification Evaluation
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Table 4 

Search Results with Javanese Dialect Keyword. 

Dialect Word Sentence Total Words and Sentences Documents 

East Javanese 4,608 1,037 5,456 23 

Tegal 5,625 1,103 6,726 20 

Cirebon 4,608 1,037 5,208 10 

 
Table 5 

Preprocessing stages in several studies. 

Researcher 
Document 

Collection 
Tokenize 

Data 

Cleansing 

Case 

Folding 

Stopword 

Removal 
Stemming 

Term 

Frequency 

Vijayarani, Ilamathi, & 

Nithya (2015) 
 ✓ - - ✓ ✓ ✓ 

Kannan & Gurusamy 

(2014) 
 ✓ - - ✓ ✓ - 

Kadhim (2018) ✓ ✓ - - ✓ ✓ ✓ 
Srividhya & Anitha (2010)  - - - ✓ ✓ ✓ 
Uysal & Gunal (2014)  ✓ - ✓ ✓ - ✓ 
Anandarajan, Hill, & Nolan 

(2019) 
 ✓ ✓ - ✓ ✓ - 

Denny & Spirling (2018)  ✓ ✓ ✓ ✓ ✓ - 

Sarkar (2019)  ✓ ✓ ✓ ✓ ✓ - 

Zong, Xia, & Zhang (2021)  ✓ ✓ - ✓ - - 

Elder, Miner, & Nisbet 

(2012) 
✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 

Furthermore, the search results for each dialect were recorded. From these search results, it is 

assumed that the more results found, the more popular the dialect is. Tables 1 to 3 show the most popular 

dialects based on the number of search results. The dialects selected for further data searches were the 

East Javanese dialect, with 3,820 search results; the Tegal dialect, with 13,900 results; and the Cirebon 

dialect, with 6,510 results. The total data collected was 17,390, consisting of 10 documents (5,208 absolute 

count) from the Cirebon dialect, 20 documents (6,726 absolute count) from the Tegal dialect, and 23 

documents (5,456 absolute count) from the East Javanese dialect. The search results for the Javanese 

dialect can be seen in Table 4. 

2.2. Preprocessing 

One of the challenges in text mining or classification is converting unstructured and semi-structured 

text into structured files (Elder, Miner, & Nisbet, 2012). This process is known as preprocessing, which 

processes raw data into cleaner and more structured data so that it is ready to be used for further analysis 

processes (Ayub, 2007). The preprocessing stage must be carried out before proceeding to the following 

stages in data processing. Table 5 shows the search results for several studies that discuss the 

preprocessing stage. From the search, it can be concluded that there are seven preprocessing stages: 

document collection, data cleansing, tokenizing, case folding, stopword removal, stemming, and Term 

Frequency (TF). However, not all stages must be applied in every preprocessing process because each 

data has different processing needs. Of the several studies in Table 5, only two researchers include 

document collection as part of the preprocessing stage. In the study by Kadhim (2018), document collection 

was used for data labeling and division into two categories: training data and test data. 

Meanwhile, in Elder, Miner, and Nisbet's (2012) study, the document collection stage was used to 

break down and summarize documents into several parts. From these two studies, it can be concluded that 

the document collection stage is used to process and prepare documents to become data ready to be 

processed. After that, the tokenization stage is carried out to break the text into separate words called 

tokens. Data cleaning eliminates noisy data, such as unnecessary symbols or characters. Furthermore, 

case folding is carried out to change all letters to lowercase. The stopword removal process aims to remove 

common words that are considered meaningless, such as the words "di", "ke", and "dari". The next stage is 

stemming, which removes word affixes and returns them to their basic word form. Finally, there is a word 

weighting stage, namely TF, which gives weight to the terms selected through the previous stages. This 

study used only five stages: document collection, tokenizing, cleaning data, case folding, and TF. Document 

collection is carried out to merge data. Case folding is used to match the letters in the data, thus producing  
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Algorithm 1. Data merging process. 

1 Begin 

2 Import libraries (readtext, dplyr)  

3 Create a list  

4 Read the dataset from the path and load it into the variable list_categories  

5 Create a dataframe with the variable df_final and create columns (File_Name, Content, and Category)  

6 For (category in list_categories) {  

7 Retrieve the dataset into the category and store it in category_path  

8 Read the dataset with the readtext library and load it into the variable df  

9 

10 

Insert file_name as File_Name, text as Content, Folder Name as Category  

Use the rbind function to append to the variable df_final (df_final = rbind(df_final, df)) 

11 } 

12 

13 

Save the dataset using the save function with 'dataset_final.rda'  

Load the dataset with the load function and encode the data as .csv with fileEncoding = 'UTF-8' 

14 End 

 

a consistent format. Tokenize is used to break sentences into tokens, facilitating data analysis. The 

tokenization process includes the data cleaning stage, which removes irrelevant elements. Data cleaning 

and case folding are important in this study because programming languages are susceptible to differences 

in format, so changes to a uniform form are necessary. Finally, TF calculates how important a term is in a 

document. 

Two stages not used in this study were stopword removal and stemming. These stages were not 

applied because it was assumed that all information contained in the dialect text was considered important. 

Therefore, the text must be recognized and cannot only be processed based on its root words. For example, 

using the word "menyapu" if only its root word, namely "sapu", is recognized can cause the word to be 

detected in another dialect. Thus, the words "menyapu" and "sapu" should not be counted as the same 

because their meanings in different dialect contexts can differ. 

The collected data is still separated into documents stored in one folder. This folder has three 

subfolders: the East Javanese dialect folder, the Tegal dialect, and the Cirebon dialect. The available data 

files are 53 documents in docx format, so data merging is still needed. There are several ways to merge this 

data manually and using a programming language. Reading data from the file system is an essential skill 

possessed by almost all programming languages (Kumar & Paul, 2016). One language that can be used for 

this task is the R language, which provides various frameworks for accessing and performing various types 

of analysis on text. Algorithm 1 shows the steps used in the data merging process. 

In Algorithm 1, two libraries are used, namely readtext and dplyr. The readtext library is used 

to read data in the dataset folder that has been created. The folder contains East Java, Tegal, and Cirebon 

folders: the dplyr library functions to create a data frame and the rm list function. Furthermore, the 

dataset is read from the path (dataset folder path address) and inserted into the list_categories 

variable. After the file is retrieved, a data frame with the df_final variable is created, and the columns 

are named, namely 'file name', 'Content' in this case is text, and 'category'. In the iteration process 

for category in list_categories, the dataset for each category will be inserted into category_path.  

Furthermore, category labels are created by reading the file using the readtext library and inserting 

it into the df. After that, the data from each category that has been read will be combined with the previous 

data using the rbind (df final, df) function. Dataset storage in Python uses the R language file 

format, so the data is loaded and encoded into .csv before being saved. UTF-8 encoding is important 

because Python cannot read the format without proper encoding, which can cause errors when the file is 

saved. The final result of the data merger produces one Excel document named 'final dataset' with 53 rows. 

During the merger process, each row is labeled according to the name of its original folder. There are 23 

rows labeled 'East Javanese dialect,' 20 rows labeled 'Tegal dialect,' and 10 rows labeled 'Cirebon dialect.'  

Furthermore, the case folding process is part of the text preprocessing stage to standardize the 

characters in the data. Case folding is changing all letters in the data to lowercase or capital letters. In this 

stage, characters from 'A' to 'Z' will be changed to lowercase ('a' to 'z'). Characters other than letters, such 

as punctuation and numbers, will be removed and considered delimiters (Jumeilah, 2017). A delimiter is a 

sequence of one or more characters used to determine the boundary of the separator. The output of this 

case, the folding process, will later be used as input for the tokenizing process. An example of the results of 

case-folding can be seen in Table 6. 

The raw data from the dialect obtained is still in words and sentences. To make the analysis process 
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Table 6 

Results of the preprocessing stage. 

Process Description Input Output 

Case Folding Converts all letters to lowercase. Aku kate nang Malang 

 

aku kate nang malang 

 

Tokenize Splits sentences into individual words or 

tokens. 

klambiku gurung garing 

 

klambiku 

gurung 

garing 

 

Remove 

Punctuation 

Removes symbols such as 

(!#$%&()*+,./:;<=>?@\[\\\]_{|}”~) 

 

kadang-kadang pancen 

kene mending ora eruh 

:( 

 

kadang kadang 

pancen kene mending 

ora eruh 

 

Remove regular 

expression 

 

Removes accented characters such as é, 

ÿ, ú 

celonoku teles masé 

 

celonoku teles mas 

 

Remove 

Numbers 

Removes numeric digits  

[0-9] 

tahun 2022 mbak iin 

wes umur 36 

tahun mbak iin wes 

umur 

 

Algorithm 2. Data cleaning and tokenization process. 

1 Begin 

2 Import libraries (pandas, numpy, matplotlib.pyplot, re) 

3 Read the .csv dataset (dataset_final.csv) using the library pd.read_csv as the variable df_FF  

4 Create a variable cleaning = list (‘0123456789éê!#$%&()*+,./:;<=>?@\[\\\]_{|}”~’) 

5 Create a variable cleaning = list (‘éÿú’)  

6 Perform Tokenizing on the text 

7 End 

 

more manageable, the data needs to be segmented into words or tokens called tokenizing. The tokenizing 

stage is the cutting of the input string based on the words that make it up, or in other words, breaking 

sentences into words. Common strategies used in the tokenizing stage are cutting words at white space 

and removing punctuation characters. In addition, at this stage, characters and punctuation are also 

removed, which is part of the data-cleaning process. Data cleaning is a process to detect and repair (or 

delete) corrupt or inaccurate datasets, tables, and databases. This term refers to identifying incomplete, 

incorrect, imprecise, and irrelevant data, which will then be replaced, modified, or deleted (Pamungkas & 

Hidayatullah, 2021). The data cleaning and tokenization process will be explained further in Algorithm 2. In 

the data cleansing stage, some unnecessary punctuations or symbols will be removed, such as 

(!#$%&()*+,./:;<=>?@\[\\\]_{|}~). However, the hyphen (–) and single quotation marks (') are not removed 

because, in Javanese, there are many words that use hyphens, such as the word "moro-moro", and single 

quotation marks are often used in words such as "opo'o". Words like this must be detected intact with their 

punctuation so that they are not split into two words that may have different meanings. 

Furthermore, other symbols in the form of regular expressions such as ú, ÿ, and é will be removed. 

Finally, the digit numbers [0-9] will also be removed because numbers are not relevant for the dialect 

classification that will be carried out. Examples of the results of the case folding, tokenizing, and data 

cleansing stages can be seen in Table 6. 

The following preprocessing stage is the Synthetic Minority Oversampling Technique (SMOTE). 

Imbalanced data occurs if the number of objects in a data class exceeds others. This unbalanced data can 

affect the results obtained in model creation, so data balancing is needed. The SMOTE method is suggested 

by Chawla, Bowyer, Hall, and Kegelmeyer (2002) to handle class imbalance by avoiding the risk of overfitting 

often faced by random oversampling. This method adds the amount of minority class data to balance it with 

the majority class by using artificial samples generated by linearly interpolating randomly selected minority 

observations and one of its neighboring minority observations (Douzas, Bacao, & Last, 2018). 

SMOTE consists of three main steps: clustering, filtering, and oversampling (Douzas, Bacao, & Last, 

2018). In the clustering step, k-means clustering is used to group the minority class. This method aims to 

increase the class region by generating samples in natural clusters of the minority class. After the clustering 

step, a filtering step is performed to select the clusters to be oversampled and determine the number of 

samples to be generated in each cluster. This step aims to achieve a balanced distribution of samples in the 

minority class. Therefore, the filtering step allocates more generated samples to the minority clusters. 

Finally, SMOTE is applied to each selected cluster in the oversampling step to achieve the target ratio of 
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Table 7 

Word frequency occurrence. 

Word Cirebon Tegal East Javanese Total Words Total Documents 

Bebasan 1,806 0 0 1,806 2 

Sing 75 376 466 917 48 

Wong 40 190 238 468 37 

Wis 25 220 212 457 37 

Ana 58 198 188 444 38 

 

minority and majority instances. In the data used in this study, there is an imbalance in the number of labels 

across the different dialects. The majority class consists of the East Javanese dialect, with a total of 23 

labels, followed by the Tegal dialect with 20 labels, and the Cirebon dialect as the minority class with only 

10 labels. Therefore, SMOTE was applied with a choice of 5 neighbors and a nominal change rate of 0.5, 

resulting in a balanced dataset with 23 labels for each of the East Javanese, Tegal, and Cirebon dialects. 

The ultimate goal of each resampling method is to improve the classification results. In other words, a 

resampling technique is considered successful if it enhances the prediction quality of the classifier used. 

Therefore, the effectiveness of the oversampling method can only be indirectly assessed by evaluating the 

classifier trained on the oversampled data. 

2.3. Word Weighting 

At the beginning of the classification process, it is necessary to select the documents to be classified 

and include them in the word weighting (Liao & Vemuri, 2002). One of the simplest weighting methods is 

TF. In this method, each term is considered to have a proportion of importance corresponding to the number 

of times it appears in the text, namely the frequency of term i\ in document\ j. Meanwhile, Inverse Document 

Frequency (IDF) measures the frequency of occurrence of terms across text documents. Terms that rarely 

appear in the entire document will have a higher IDF value than terms that appear frequently. Research 

combining TF and IDF to calculate term weights shows that combining the two produces better performance 

(Trstenjak, Mikac, & Donko, 2014). The TF-IDF method measures the relative frequency of a word in a 

particular document using the inverse proportion of the word across the entire document corpus. In 

calculating the TF-IDF value, this method involves two main elements: TF (frequency of occurrence of term 

𝑖 in document 𝑗) and IDF (inverse frequency of documents containing term 𝑖). The TF-IDF calculation formula 

can be seen in Eq. (1).  

𝑎𝑖𝑗 = 𝑡𝑓𝑖𝑗𝑖𝑑𝑓𝑖 = 𝑡𝑓𝑖𝑗 × 𝑙𝑜𝑔2 (
𝑁

𝑑𝑓𝑖
)             (1) 

in Eq. (1), 𝑎𝑖𝑗  represents the weight of term 𝑖 in document 𝑗. Furthermore, 𝑁 refers to the total number of 

documents in the data collection. The value of 𝑡𝑓𝑖𝑗 is the frequency of occurrence of term 𝑖 in document 𝑗. 

As for 𝑑𝑓𝑖, this parameter refers to the number of documents in the collection containing the term 𝑖. 
For example, in the analysis of the frequency of occurrence of words in the Javanese dialect, it can 

be seen in Table 7 that the most frequently occurring word in the Cirebon dialect is "bebasan", which appears 

1,806 times in 2 documents. Meanwhile, in the Tegal and East Javanese dialects, the most frequently 

occurring word is "sing", which is spread across 40 documents with a frequency of occurrence of 376 times 

in the Tegal dialect and 466 times in the East Javanese dialect. 

2.4. Classification using k-Nearest Neighbor (KNN) 

K-Nearest Neighbor (K-NN) is an algorithm used to classify data based on its 𝑘 nearest neighbors, 

with 𝑘 referring to the number of neighbors considered in the classification process (Isnain, Supriyanto, & 

Kharisma, 2021). K-NN is included in the category of supervised learning algorithms, which aim to find 

patterns in data by connecting new data with existing patterns. In the K-NN algorithm, distance 

measurement plays an important role in determining the level of similarity or regularity between data and 

items (Mughnyanti, 2020). Research conducted by Wahyono, Trisna, Sariwening, Fajar, & Wijayanto 

(2020), which compared distance calculations in K-NN for textual data classification, showed that Euclidean 

distance provides the best accuracy at most 𝑘 sizes. The formula for calculating Euclidean distance can be 

seen in Eq. (2). 

𝑑(𝑥, 𝑦) = √𝛴𝑟=1
𝑁 (𝑎𝑟𝑥 − 𝑎𝑟𝑦)²               (2) 

Eq. (2) defines 𝑑(𝑥, 𝑦), epresenting the distance between two documents, 𝑥 and 𝑦. In this context, 𝑁 refers 

to the total number of unique words in the document collection. The parameters 𝑎𝑟𝑥  dan 𝑎𝑟𝑦 denote the 

term r's weight in documents 𝑥 and 𝑦, respectively. 

In addition, the value of 𝑘 in the K-NN algorithm is a factor that determines the number of documents  
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Table 8 

Some studies on 𝑘 modification.  

Researcher Best 𝒌 Precision (%) Recall (%) F1-Score (%) Accuracy (%) 

Briliani, Irawan, & Setianingsih (2019) 3 98 98 98 98.13 

Asiyah (2015) 2 90.27 83.97 87 83.97 

Nurjanah, Perdana, & Fauzi (2017) 3 72.28 100 83.91 80.83 

Irfan (2020) 5 61.66 56 58.66 81.81 

 

Table 9 

Testing scheme for various 𝑘 values. 

𝒌 Accuracy (%) Precision (%) Recall (%) 

2  94.05 95.83 94.44 

3  91.43 93.61 91.67 

4 91.19 94.17 92.22 

5 90.00 93.83 90.56 

6 90.00 93.83 90.56 

7 87.14 90.83 88.33 

8 87.14 92.17 88.33 

9 85.71 88.61 86.67 

 

from the collection that are closest to the document to be selected. Determining the optimal value of 𝑘 is 

highly dependent on the characteristics of the data itself. In general, a higher value of 𝑘 can reduce the 

effect of noise on classification but can make the boundaries between each classification less clear. To 

overcome this problem, the value of 𝑘 can be modified in each class (Khamar, 2013). Several studies related 

to modifying the value of 𝑘 can be seen in Table 8. 

From Table 8, several studies show that the higher the value of 𝑘, the lower the accuracy, although 

there are certain conditions where a particular value of 𝑘 increases accuracy. Increasing the 𝑘 in each 

distance calculation tends to decrease accuracy because the more 𝑘 values are used, the more data is not 

classified correctly. Therefore, in this study, only testing was carried out on the 𝑘 variable with a smaller 

value, namely 𝑘 = 2 to 𝑘 = 9. 

2.5. Evaluation 

The cross-validation method is used to test the K-NN algorithm. Cross-validation is a statistical 

technique employed to evaluate and compare learning algorithms by partitioning the data into two sets: 

training data and testing data. The data, divided into these two parts, are alternately used for training and 

testing. A commonly used technique in this process is K-Fold Cross Validation. In K-Fold Cross Validation, 

the complete dataset is randomly divided into '𝑘' subsets of approximately equal size and mutually exclusive. 

The model in classification is then trained and tested '𝑘' times, with each training run performed on all folds 

except one, which is left out for testing. In this study, 10-fold cross-validation is used. The evaluation of 

classification results includes three key metrics: accuracy, precision, and recall. 

 

3. Results and Discussion 
This chapter discusses the stages of testing and analyzing the results of implementing the K-NN 

algorithm for classifying Javanese dialects. The study was conducted using one merged document 

consisting of three labels, namely the East Java label, the Tegal label, and the Cirebon label. The previously 

available data was balanced using the SMOTE oversampling technique with a value of 𝑘 = 6, resulting in a 

total of 69 labels evenly divided into three for each label. Before testing the K-NN algorithm, the data was 

divided into training and test data using the 10-fold cross-validation method, where 90% of the data was 

used as training data and 10% as test data.  

The K-NN algorithm testing was carried out with a 𝑘 value testing scenario, namely, 𝑘 values varying 

from 2 to 9. This test aims to determine the optimal 𝑘 value in the classification process using the K-NN 

algorithm, especially in determining the system's accuracy results. Each 𝑘 value becomes a testing 

parameter, so its effect on system accuracy can be analyzed. The results of testing the effect of the 𝑘 value 

on system accuracy are presented in Table 9. At the same time, a visual summary is shown in Fig. 2. Based 

on the test results, several 𝑘 values showed the same performance, such as 𝑘 =  5 and 𝑘 =  6 and 𝑘 =  7, 

and 𝑘 =  8. This is due to the mechanism of the K-NN algorithm, where the k value represents the number 

of closest data used in the classification. If the data labels on the 𝑘 nearest neighbors vary, then the 

classification will be determined based on the majority label. Therefore, in practice, the 𝑘 value is generally 

an odd number. 
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Fig. 2. Results of testing based on 𝑘 values. 

 

The results of testing the effect of the 𝑘 value on system accuracy are presented in Table 9. At the 

same time, a visual summary is shown in Fig. 2. Based on the test results, several 𝑘 values showed the 

same performance, such as 𝑘 = 5 and 𝑘 = 6 and 𝑘 = 7, and 𝑘 = 8. This is due to the mechanism of the K-

NN algorithm, where the 𝑘 value represents the number of closest data used in the classification. If the data 

labels on the k nearest neighbors vary, then the classification will be determined based on the majority label. 

Therefore, in practice, the 𝑘 value is generally an odd number. The test results show that the best 

classification performance is obtained at a value of 𝑘 = 2, with an accuracy of 94.05%, a precision of 

95.83%, and a recall of 94.44%. Visualization of the confusion matrix for each label classified at 𝑘 = 2 is 

shown in Fig. 3. 

From the 69 labels, 65 were predicted correctly, and 4 were mispredicted. The details are as follows: 

21 labels were predicted correctly for the Cirebon dialect, while 2 labels were incorrectly predicted as the 

East Javanese dialect. The tegal dialect has entirely correct predictions. Meanwhile, 21 labels were 

predicted correctly for the East Javanese dialect, while two were incorrectly predicted as the Cirebon 

dialect. Calculation for each label is done using evaluation metrics. Precision value is calculated by dividing 

the number of relevant documents by the number of all documents found. 

In contrast, recall value is calculated by dividing the number of relevant documents by the number of 

all documents in the data. Meanwhile, the accuracy value is calculated by dividing the number of correct 

predictions by the number of all predictions and multiplying by 100%. The results of calculating accuracy, 

precision, and recall for each dialect are presented in Table 10. 

The accuracy for Cirebon and East Javanese dialects of 91.30% is caused by two documents that are 

mispredicted in both dialects. Meanwhile, the Tegal dialect obtained 100% accuracy because all documents 

were successfully predicted correctly as the Tegal dialect. Table 11 shows data with incorrect label 

predictions. 

The incorrect prediction of the Cirebon class as East Javanese refers to a document containing the 

text "uwoh srikayo di paih...". In this document, the confidence value for the Tegal class is 0.450, while the 

East Javanese class's is 0.550. Therefore, the document is predicted to be the East Javanese dialect 

because the East Javanese class has a higher confidence value. Likewise, this document is predicted to be 

the Cirebon dialect in the East Javanese dialect containing the text "ngalam arudam arodam...". This 

happens because the confidence value for the East Javanese class of 0.451 is smaller than that for the 

Cirebon dialect, which reaches 0.549. Thus, the class prediction falls on the Cirebon dialect, according to 

the class with the highest confidence value in the text. 
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Fig. 3. Confusion matrix from the testing results at 𝑘 = 2. 

 

Table 10 

Accuracy, precision, and recall values for each class. 

Dialect Accuracy Precision Recall 

Cirebon  91.30 91.30 91.30 

Tegal  100 100 100 

East Javanese  91.30 91.30 91.30 

 

Table 11 

Incorrect class prediction. 

Class 
Prediction 

(class) 

Confidence 

(Tegal) 

Confidence 

(Cirebon) 

Confidence 

(East Javanese) 
Text 

Cirebon  East Javanese 0.450 0 0.550 uwoh srikayo di paih… 

Cirebon  East Javanese 0 0.450 0.550 aang abah abal aban... 

East Javanese Cirebon 0 0.528 0.472 ngalam arudam arodam… 

East Javanese   Cirebon 0 0.549 0.451 a iku ojo ngono ta yok… 

 

 The findings of this study highlight the effectiveness of the K-NN algorithm in classifying dialect texts, 

primarily when supported by proper preprocessing and data balancing using SMOTE. A smaller 𝑘 value 

provides optimal results because it narrows the scope of relevant neighboring data and increases sensitivity 

to noise in the dataset. Therefore, the selection of the 𝑘 value must consider the characteristics of the 

dataset as a whole to achieve more accurate results. 

Although the model's accuracy is relatively high, several weaknesses were identified, such as bias in 

the distribution of prediction results. The Cirebon dialect, for example, is often classified as East Javanese, 

indicating the need for more specific feature adjustments to capture unique differences between dialects. 

In addition, although the SMOTE technique effectively balances data, using less representative synthetic 

data can introduce new biases if not adequately supervised. 

The results of this study have important implications for preserving the Javanese language, especially 

in supporting the development of linguistic technology-based applications. Integration of the results of this 

study with other methods, such as neural network-based embedding, can provide more in-depth and high-

precision results in the future. 

4. Conclusions 
This study successfully classifies three main dialects of Javanese, namely East Javanese, Central 

Javanese, and West Javanese, using the K-NN algorithm with the highest accuracy of 94.05% at a value of 

𝑘 = 2. The K-NN algorithm has been proven effective in capturing differences in linguistic patterns between 

dialects, especially with the support of the SMOTE technique, which balances uneven data. In addition, the 
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preprocessing process involving tokenizing, case folding, and word weighting using TF also plays an 

important role in improving model performance. 

A significant contribution of this study lies in its support for preserving the Javanese language through 

a linguistic technology approach. The results of this study can also be a basis for further development in the 

field of dialect-based Natural Language Processing (NLP), such as speech recognition applications and text 

analysis. However, some limitations, such as data bias from online sources and data distribution that can 

still be improved, must be considered in further research. Therefore, efforts to expand the scope of data by 

involving authentic sources and exploring other classification algorithms, such as SVM or deep learning, 

can improve the quality and impact of this study. 
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