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Abstract 
Breast cancer poses a considerable challenge in Indonesia, resulting in numerous fatalities. This study 

aims to improve the accuracy and efficiency of early breast cancer diagnosis by leveraging modern image 

processing and artificial intelligence. The dataset used is the Mini-DDSM (Mini Digital Database for 

Screening Mammography), taken from Kaggle and vetted by radiologists into a Region of Interest (ROI) 

consisting of three categories: Benign, Cancer, and Normal. The methodology encompasses 

comprehensive image preprocessing, which includes resizing, cropping, RGB-to-grayscale conversion, 

Laplacian of Gaussian (LoG) filtering, Gabor filtering, global threshold segmentation, and image 

enhancement. A Convolutional Neural Network (CNN) is employed for classification purposes. Ninety 

percent of the images are allocated for training, while 10% are designated for testing, with critical 

parameters such as learning rate, batch size, and epochs being tuned throughout the training process. 

The CNN architecture was assessed based on recognition rate, error rate, epoch count, and training 

duration. The results provide a flawless validation accuracy of 100% over 32 trials. The findings 

demonstrate that the suggested method markedly enhances early breast cancer identification using 

microcalcification analysis in mammography images, assisting medical professionals in early diagnosis 

and potentially elevating patient recovery rates through prompt detection and treatment. 

Keywords: breast cancer, Convolutional Neural Network, digital image processing, Gabor filter, 

mammography, microcalcification. 

1. Introduction 
Worldwide, cancer ranks high among the top killers. In 2018, there were 18.1 million new cases of 

cancer and 9.6 million deaths worldwide, according to figures from the World Health Organization (WHO) 

(World Health Organization, 2022). According to projections, the number of cancer-related deaths would 

surpass 13.1 million by 2030. Breast, lung, cervical, liver, lip, and oral cavity cancers were the leading 

causes of cancer-related fatalities among the 1.4 million cancer-related deaths and 2.2 million new cases 

recorded by the World Health Organization for the Southeast Asia region in 2015. Indonesia is facing a 

serious health crisis due to the alarmingly high incidence rates of breast cancer, the most common cancer 

in women. The most common cancer diagnosis in Indonesia in 2022 was breast cancer, with 408,661 new 

cases (International Agency for Research, 2022). Age, heredity, early menarche, reproductive history, 

obesity, alcohol use, and environmental variables are the main determinants of breast cancer risk. Breast 

cancer screenings, including self-examinations (SADARI, known as self-breast examinations by 

Indonesians), clinical breast exams (SADANIS, known as clinical breast examinations by Indonesians), and 

mammography, are an important part of primary and secondary preventive efforts. When it comes to finding 

breast cancer in its early stages, mammography is the imaging technique of choice. It involves both 

screening and diagnostic examinations aimed at identifying abnormalities in breast tissue and physical 

changes in the breast (Iranmakani, et al., 2020; Guzmán-Cabrera, et al., 2013; Sama & Baneamoon, 2017; 

Singh & Gupta, 2015; Basheer & Mohammed, 2013; Al-masni, et al., 2017). Mammography is highly 

sensitive in detecting lumps and microcalcifications, which can indicate the presence of abnormal cells or  
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malignant tumors (Logullo, Prigenzi, Nimir, Franco, & Campos, 2022). 

Previous studies have shown that mammographic imaging techniques are highly effective in 

detecting breast cancer (Khoulqi & Idrissi, 2020). However, the visual limitations and subjectivity of human 

interpretation can lead to diagnostic inaccuracies. Therefore, the development of computer-based systems, 

particularly those employing artificial intelligence (AI), is essential to enhance diagnostic accuracy and 

efficiency. Machine learning and deep learning algorithms have been utilized in a number of studies to 

analyze mammographic images using artificial intelligence (Fadil, Jackson, Majd, Ghazi, & Kaabouch, 2019; 

Khoulqi & Idrissi, 2020). For example, Madhavi and Bobby's research showed that LS-SVM with Random 

Forest classification with Gabor filters produced very accurate and sensitive mammography results 

(Narasimhaiah & Nagaraju, 2023). Finding encouraging results, Khan and Arora investigated thermography 

utilizing Gabor filters and SVM classification as a non-invasive alternative to mammography (Salama & Aly, 

2021). Combinations of machine learning algorithms based on Gabor filters have recently shown promising 

results in the identification of breast cancer (Podgornova & Sadykov, 2019; Wang, et al., 2024). 

To advance these efforts, this study deliberately selects a combination of Gabor filters and a deep 

learning approach for specific, compelling reasons. The decision to employ Gabor filters is rooted in their 

exceptional ability to capture multi-scale and multi-orientation texture information. This characteristic is 

particularly advantageous for identifying microcalcifications, which often manifest as subtle, high-frequency 

textural patterns against a complex tissue background in mammograms. By simulating the response of the 

human visual cortex, Gabor filters excel at enhancing edges and local textural features, making them a 

powerful tool for preprocessing images to accentuate diagnostically relevant regions that might otherwise 

be missed (Kamil, 2020). 

Furthermore, this study adopts a Convolutional Neural Network (CNN), a state-of-the-art deep 

learning architecture, to address the limitations of traditional machine learning approaches. Unlike 

conventional methods that rely on manually engineered features, CNNs offer the distinct advantage of 

automatically learning hierarchical feature representations directly from the image data. Through this end-

to-end learning process, the model is able to capture intricate and abstract patterns indicative of 

malignancy, ranging from simple edges in the early layers to more complex shapes in the deeper layers. 

This capability renders CNNs particularly robust and effective for complex medical image classification 

tasks. 

This research, therefore, proposes a synergistic methodology that combines the targeted feature 

enhancement of Gabor filters with the powerful automated classification of CNN (Annisa, Lubis, & Najmita, 

2020; Fuadi, 2023). The goal is to develop a highly accurate system for early breast cancer detection by 

analyzing microcalcifications in the Mini-DDSM dataset. By integrating these advanced techniques, this 

study aims to improve the manual interpretation of mammographic pictures, provide a reliable decision 

support tool for medical practitioners, and ultimately contribute to increasing patient recovery rates through 

more timely and precise diagnosis (Alfayat & Whardana, 2024; Whardana, Mufti, Hermawan, & Aziz, 2024; 

Whardana & Putri, 2025).  

 

2. Theoretical Background 
Subsection 2.1 will offer a comprehensive overview of the definition, progression, and essential 

characteristics of breast cancer to elucidate the principles and mechanisms of breast cancer detection 

methods. 

2.1. Breast Cancer 

Cancer develops when normal cells sustain DNA damage, leading to alterations in their DNA. These 

cells alter and start to proliferate and expand faster than usual. After a certain age, cancer cells stop 

replicating and become invasive, suppressing or even killing off healthy cells in the body. According to 

American Cancer Society, breast cancer is a specific kind of cancer that develops in the breast's supporting 

tissues, glandular cells, and glandular ducts; nevertheless, it does not affect the breast skin (American 

Cancer Society, 2014). 

2.2. Mammography 

Breast cancer is a malignancy that affects the mammary glands and adjacent tissues within the 

breast. To mitigate the risk of breast cancer, early screening, including medical evaluations as outlined by 

Dyanti & Suariyani (2016), is essential. In this context, a prevalent diagnostic technique employed by 

physicians is mammography, which utilizes X-rays as a light source to generate images. The output 

produced from this mammography assessment is designated as a mammographic image, as seen in Fig. 1 

(Brahimetaj, et al., 2022; Cardona, Orozco, & Álvarez, 2014; Zamir, et al., 2021; Leong, Hasikin, Lai, Zain,  
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Fig. 1. Breast mammography image. 

 

 
Fig. 2. Mass mammography image. 

 

& Azizan, 2022). 

Mammography is a medical imaging procedure that utilizes low-dose X-rays to visualize the internal 

structure of breast tissue, producing what is known as a mammographic image. The image highlights 

different densities, with glandular tissue appearing as bright white areas due to higher density, while fatty 

tissue appears darker. This type of imaging is essential for early detection and diagnosis of breast cancer, 

as it allows for the identification of abnormalities such as irregular masses, blurred boundaries, or grouped 

microcalcifications. Early detection through mammography significantly improves the chances of successful 

treatment by identifying cancer before clinical symptoms emerge. Additionally, digital mammography has 

enhanced image resolution and introduced tools like Computer-Aided Detection (CAD) systems, which help 

radiologists identify suspicious areas with greater accuracy. As a non-invasive diagnostic method, 

mammography is a cornerstone in breast cancer screening programs, particularly for women over 40 or 

those with genetic predispositions, offering a critical advantage in reducing breast cancer mortality rates 

(Guo, et al., 2022; Liew, Hameed, & Clos, 2021; Zhao, Chen, & Cai, 2022).  

2.3. Types of Breast Cancer 

Mammographic images are crucial for detecting breast cancer, especially through the identification 

of mass lesions, known as masses, and the detection of microcalcifications. On mammography, breast 

cancers, whether benign or malignant, typically manifest as lumps. A mass denotes a region containing a 

lesion observable from two distinct projections in mammographic imaging, as illustrated in Fig. 2.  

The presence of microcalcifications is an additional characteristic of breast cancer. The deposition 

of calcium minerals in breast tissue, known as lobular or ductal tissue, results in microcalcifications that 

appear as minute stains or patches. Fig. 3 illustrates that microcalcifications serve as a significant signal of 

potential breast cancer in mammographic images.  

Using mammography technology, doctors can more thoroughly and precisely identify the type of 

breast cancer, providing a solid basis for further diagnosis and appropriate treatment planning. Awareness 

of the importance of understanding the type of breast cancer through mammography images is the first step 

in early detection and effective treatment of this disease. 
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Fig. 3. Microcalcification mammography image. 

 

2.4. Digital Image Processing 

Digital image processing involves analyzing images using computer algorithms to enhance image 

quality, extract embedded data, and transform images for easier human interpretation or analysis. It begins 

with two core implementations: improving visual data for accurate interpretation and organizing visual 

information for autonomous device recognition. The primary focus of the latter is to extract visual data in a 

computer-processable format. An image can be viewed as a 2D function of light intensity, 𝑓(𝑥, 𝑦), with 

spatial coordinates (𝑥, 𝑦) representing positions in the image plane. The brightness or gray level at each 

point (𝑥, 𝑦) corresponds to the value of f. Image processing is generally categorized into three types: low-

level, mid-level, and high-level processing. Low-level processing includes basic operations like image 

rotation, reading, resizing, histogram normalization, and color conversion, which modify the original image. 

Mid-level processing involves extracting information from low-level processes, such as edge detection. 

High-level processing enhances mid-level processing with artificial intelligence integration (Singh & Goel, 

2020). 

 

3. Methods 
The research methodology employed in this study is meticulously designed to ensure a 

comprehensive analysis and accurate results. This section provides an in-depth explanation of the 

processes and techniques applied throughout the research. The methodical approach encompasses 

various stages, from data collection and preprocessing to the implementation and evaluation of advanced 

machine learning models. Each step is carefully orchestrated to ensure precision and reliability, thereby 

enhancing the overall validity of the study's findings. The following subsections detail these processes, 

beginning with the system flowchart that provides a visual representation of the workflow. 

3.1. System Flowchart 

We design the system flowchart whose main function is to provide a better understanding of the 

processes that occur within the system. Fig. 4 is the system flowchart design used in breast cancer early 

detection research through microcalcification analysis with Gabor filters and deep learning Convolutional 

Neural Network (CNN) (Mohimont, Alin, Rondeau, Gaveau, & Steffenel, 2022; Zhang & Lu, 2021; Sarker, 

2021; Fuadi, 2023). 

3.2. Dataset Collection and Selection 

The secondary dataset used in this research was obtained from Kaggle, an open-source platform 

that provides publicly available medical imaging resources. Specifically, the dataset is the Mini Digital 

Database for Screening Mammography (Mini-DDSM), a compressed version of the original DDSM curated 

by the University of South Florida (USF). This collection contains 9,684 PNG-formatted mammography 

images sourced from patients aged 25 to 90 years (median age of 50), categorized into three classes: 2,728 

Normal, 3,360 Benign, and 3,596 Cancer cases. During the dataset selection stage, images with edge noise 

that could affect preprocessing were removed. After the refinement process, a total of 8,914 images were 

retained, consisting of 2,544 Normal, 3,006 Benign, and 3,364 Cancer samples, which were subsequently 

used for preprocessing and model training. Examples of the dataset categories are presented in Fig. 5. 

3.3. Preprocessing 

The preprocessing of mammography images consists of several essential steps aimed at improving 

image quality before classification using Convolutional Neural Networks (CNN). These steps are designed 

to minimize noise or artifacts that may interfere with diagnostic accuracy. The process begins with resizing 

all images to a standardized resolution of 512 × 512 px using MATLAB’s imresize function, ensuring uniform 
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Fig. 4. Flowchart of the proposed classification method. 

 

 
Fig. 5. Example of Kaggle Mini-DDSM dataset. 

 

dimensions and eliminating unnecessary variations across the dataset. The overall workflow of this 

preprocessing stage is illustrated in Fig. 4, where each step is systematically arranged to prepare the images 

for further enhancement and feature extraction. Following the resizing step, the next stage involves image 

cropping, which focuses on removing irrelevant regions and retaining diagnostically significant breast tissue 

areas for subsequent analysis.  

As illustrated in Fig. 4, the preprocessing pipeline systematically organizes the key steps required 

before classification. Starting from the dataset input, the images undergo resizing, cropping, and grayscale 

conversion to standardize their format. Subsequent filtering techniques, such as Laplacian of Gaussian and 

Gabor filters, are applied to enhance edge details and capture texture-based features. Additional processes, 

including threshold segmentation and image sharpening, further refine the data by reducing noise and 

emphasizing diagnostically relevant structures. This sequential workflow ensures that the input images are 

optimized for CNN classification, ultimately supporting more accurate and reliable detection of breast 

abnormalities.  

Fig. 6 presents the flowchart of the CNN model used for training in this study. The diagram outlines 

the sequential process beginning with the input of preprocessed mammography images, followed by 

splitting the dataset into training and testing sets, initializing learning parameters, and proceeding with CNN 

training (Nagane & Mulani, 2021). The final stage produces classification outputs into three categories: 

Benign, Cancer, and Normal. This flow complements the architectural details summarized in Table 3, where 

each convolutional, pooling, and fully connected layer contributes to feature extraction and decision-

making. Together, the flowchart and the architectural table provide a comprehensive view of how the CNN 

model is structured and executed to achieve reliable breast cancer image classification (Jothiaruna, Sundar, 

& Ahmed, 2021; Kadir, Nugroho, Susanto, & Santosa, 2011; Saifullah, Sunardi, & Yudhana, 2016; Iriyanto 

& Zaini, 2014; Annisa, Lubis, & Najmita, 2020). 
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Fig. 6. Flowchart of the training process for the Convolutional Neural Network (CNN) model. The illustration of the 

CNN model is inspired by Gu, Wang, Hong, & Gui (2019). 

 

  
(a) (b) 

Fig. 7. Image preprocessing steps: (a) Original image, and (b) Resized image. 

 

3.3.1. Image resizing 

Image preprocessing is a fundamental step in the development of image-based machine learning 

models, particularly in medical imaging. This step ensures the consistency, quality, and usability of the input 

data for subsequent processing and analysis. By standardizing various image attributes such as size, 

resolution, and intensity, preprocessing facilitates accurate feature extraction and model training. This 

process is essential for eliminating variability in raw data and improving the robustness and generalizability 

of the model. One of the critical preprocessing operations applied in this study is image resizing, which is 

discussed in the following subsection.  

Image resizing changes the mammography image to a size of 512 x 512, which aims to equalize the 

size of the obtained image and prepare it for input to training using a Convolutional Neural Network (CNN). 

The example result of the image that has been resized is shown in Fig. 7.  

Fig. 7 illustrates the outcome of the image resizing process as part of the image preprocessing stage. 

Fig. 7(a) shows the original mammography image, while Fig. 7(b) depicts the resized image with dimensions 

standardized to 512 × 512 px. This resizing step is essential for ensuring uniformity across all input images, 

thereby facilitating efficient and consistent training using CNNs. The comparison between the original and 

resized images highlights the importance of this preprocessing step as it enhances the performance of 

subsequent image analysis and model training phases. 

3.3.2. Image cropping 

The next preprocessing step in this study is image cropping. After resizing each mammography 

image to 512 × 512 px, cropping is applied to remove extraneous artifacts such as watermarks and to retain 

only the relevant breast tissue region. This operation produces an image of 512 × 450 px, as illustrated in 

Fig. 8, thereby improving focus and reducing noise for subsequent feature extraction and classification.  
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Fig. 8. Image preprocessing: Example of a cropped image. 

 

 
Fig. 9. Image Preprocessing: Example of image grayscale result. 

 

 
Fig. 10. Image preprocessing: Example of a grayscale-converted image. 

 

Fig. 8 presents the cropping result of mammography images, focusing on the region of interest (ROI). 

This step isolates the relevant breast tissue area while eliminating background information that may 

introduce noise. Highlighting the ROI supports more accurate feature extraction, thereby improving the 

performance of subsequent classification tasks. 

3.3.3. Red, Green, Blue (RGB) to Grayscale Conversion 

The next preprocessing step in this study is the conversion of mammography images from Red, 

Green, and Blue (RGB) format to grayscale. Fig. 9 shows a grayscale image. This transformation is 

necessary because mammography images are inherently grayscale, and the presence of RGB pixels can 

cause unnecessary variation. Converting the image to grayscale eliminates this inconsistency, resulting in 

a uniform black-and-white representation.  

Fig. 9 presents the result of converting the mammography image from RGB to grayscale. This 

preprocessing is necessary because mammographic images are inherently grayscale; residual RGB pixels 

may introduce unwanted variation. The conversion removes these discrepancies and produces a uniform 

black-and-white representation that improves contrast and highlights diagnostically relevant structures for 

later analysis. 

3.3.4. Laplacian of Gaussian (LoG) filtering 

The Laplacian of Gaussian (LoG) filter was applied in this study to sharpen the edges of 

mammography images and highlight the Region of Interest (ROI). This method was designed to improve the 

visibility of disturbances or abnormalities in breast tissue, thereby supporting the identification of potential 

abnormalities. The ROI references were obtained from the Mini-DDSM dataset available on Kaggle, which  
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Fig. 11. Gabor filter process. 

 

 
Fig. 12. Global threshold segmentation. 

 

was curated by radiographers. In this study, the LoG parameters were set with a filter size of 50 and a 

Gaussian scale (σ) of 5, which controls the spread of light values on pixels. Fig. 10 shows the results of 

applying the LoG filter (Ghosal, Mandal, & Sarkar, 2018). 

Fig. 10 presents the result of applying the LoG filter to a mammography image. The filter successfully 

enhances the edges of breast tissue structures and clearly delineates the ROI. This enhancement facilitates 

the identification of potential abnormalities by improving contrast and highlighting diagnostically significant 

features, thereby supporting subsequent stages of image analysis and classification. 

3.3.5. Gabor filtering 

The Gabor filter is one of the most important preprocessing steps in this study, as it extracts texture-

based features that capture the orientation of pixel intensity variations in the image. Fig. 10 shows the Gabor 

filter process. This process improves the visibility of microcalcifications in mammography images by 

highlighting directional patterns. This filter operates using two main parameters: wavelength (λ), which 

determines the spatial frequency of light that can be detected, and orientation (θ), which determines the 

direction of the wave (Kamil, 2020). In this study, the wavelength was set to 3.5, while four orientations were 

applied at 0°, 45°, 90°, and 135°, enabling the detection of microcalcifications in various directional fields.  

Fig. 11 illustrates the outcome of applying the Gabor filter to a mammography image during the 

preprocessing stage. The filter enhances the detection of microcalcifications by emphasizing texture and 

edge details in multiple orientations. The directional patterns generated through the Gabor filter highlight 

diagnostically significant structures, thereby facilitating more accurate feature extraction and supporting 

subsequent classification and analysis. 

3.3.6. Global threshold segmentation 

After the application of the Gabor filter, this study employed global threshold segmentation to further 

refine the image quality. This technique reduces noise by distinguishing between foreground and 

background pixels based on a fixed threshold value (Houssein, Helmy, Oliva, Elngar, & Shaban, 2021). In 

this study, a threshold value of 0.4 was selected to suppress irrelevant artifacts, such as dust particles, that 

could obscure diagnostically significant features. This step ensures greater focus on microcalcification 

regions, thereby enhancing their structural visibility for subsequent classification tasks. The result of this 

process is presented in Fig. 12.  

The outcome of the global threshold segmentation is presented in Fig. 12, which demonstrates the 

effective separation of foreground and background pixels in the mammography image. The application of a 

threshold value of 0.4 successfully suppresses irrelevant noise, such as dust artifacts, and highlights diag- 
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Fig. 13. Image sharpen result. 

 
Table 1 

Dataset distribution for preprocessing, labeling, and data splitting. 

Label Total Samples Training Data (90%) Testing Data (10%) 

Benign 3,006 2,290 254 

Cancer 3,364 2,705 301 

Normal 2,544 3,028 336 

 

Table 2 

Training results at varying learning rates, epochs, mini-batch sizes, and validation frequencies. 

Learning Rate Epochs Mini-Batch Size Validation Frequency 
Training Time 

(min:s) 
Validation Accuracy (%) 

0.05 10 10 10 36:24 37.71 

0.05 10 10 50 12:33 33.78 

0.05 10 50 10 12:34 37.71 

0.05 10 50 50 09:05 37.71 

0.05 20 10 10 84:17 33.78 

0.05 20 10 50 25:30 33.78 

0.05 20 50 10 24:26 37.71 

0.05 20 50 50 54:59 37.71 

0.01 10 10 10 30:09 37.71 

0.01 10 10 50 12:35 33.78 

0.01 10 50 10 12:41 100.00 

0.01 10 50 50 08:48 37.71 

0.01 20 10 10 60:30 37.71 

0.01 20 10 50 25:04 37.71 

0.01 20 50 10 25:06 100.00 

0.01 20 50 50 17:25 100.00 

0.005 10 10 10 32:06 37.71 

0.005 10 10 50 12:36 37.71 

0.005 10 50 10 12:48 99.66 

0.005 10 50 50 09:28 99.66 

0.005 20 10 10 62:05 99.33 

0.005 20 10 50 24:45 100.00 

0.005 20 50 10 25:04 100.00 

0.005 20 50 50 17:27 100.00 

0.001 10 10 10 34:41 100.00 

0.001 10 10 50 13:31 100.00 

0.001 10 50 10 13:19 100.00 

0.001 10 50 50 09:10 100.00 

0.001 20 10 10 60:21 100.00 

0.001 20 10 50 24:38 99.66 

0.001 20 50 10 26:45 99.66 

0.001 20 50 50 18:28 99.55 

 

nostically significant regions. As shown in the figure, this method isolates the microcalcification area with 

greater clarity, thereby enhancing structural visibility and improving the reliability of subsequent image 

classification tasks.  
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Table 3 

Layers’ description for the proposed CNN architecture. 

Layer Kernel/Units Stride Output Shape 

0 Input - - 512 × 450 × 1 

1 Conv2D 3 × 3, 8 filters 1 512 × 450 × 8 

2 BatchNorm + ReLU - - 512 × 450 × 8 

3 MaxPool2D 2 × 2 2 256 × 225 × 8 

4 Conv2D 3 × 3, 16 filters 1 256 × 225 × 16 

5 BatchNorm + ReLU - - 256 × 225 × 16 

6 MaxPool2D 2 × 2 2 128 × 112 × 16 

7 Conv2D 3 × 3, 32 filters 1 128 × 112 × 32 

8 BatchNorm + ReLU - - 128 × 112 × 32 

9 Flatten/ GlobalAvgPooling2D - - Vector (128 × 112 × 32) 
10 Dense (Classifier) 3 units - 3 

11 Softmax - - 3 (class probabilities) 

 

3.3.7. Image sharpening  

The image sharpening process is applied to enhance the quality of mammography images by 

increasing edge definition and improving the clarity of diagnostically relevant structures. This method utilizes 

the Image Sharpen function in MATLAB to emphasize fine details and highlight the boundaries of 

microcalcifications, thereby supporting more accurate analysis in subsequent stages. As shown in Fig. 13, 

the sharpening process produces a clearer and more focused representation of the breast tissue, enabling 

better identification of critical features while reducing ambiguity in the image interpretation.  

Fig. 13 shows the result of applying the Image Sharpen method to mammography images. This 

process enhances fine details and clarifies the boundaries of microcalcifications, making the structures 

more distinct and easier to interpret. By improving visual sharpness, this step strengthens the accuracy of 

subsequent analysis, particularly in identifying critical features within breast tissue.  

After the preprocessing stage, all images produced through the Image Sharpen process are 

categorized into three classes: Benign, Cancer, and Normal, as presented in Table 1. From a total of 8,914 

available images, the dataset is split into 90% for training and 10% for testing. This splitting provides a 

balanced representation of each class, ensuring that the Convolutional Neural Network (CNN) model can 

be trained with an appropriate data distribution.  

Furthermore, the results of CNN training using the dataset were evaluated under various 

combinations of learning rate parameters, number of epochs, mini-batch size, and validation frequency (VF). 

Table 2 summarizes the model performance for each configuration. The results indicate that models trained 

with a relatively large learning rate of 0.05 yielded low and unstable validation accuracy. In contrast, smaller 

learning rates of 0.01, 0.005, and 0.001 achieved significantly higher accuracy, with some configurations 

reaching 99–100%. These findings highlight the critical role of selecting appropriate training parameters to 

optimize CNN performance in mammography image classification.  

These experimental outcomes confirm that the adjustment of learning rate parameters has a 

substantial impact on model performance. By identifying optimal configurations that achieve stable and high 

validation accuracy, the study establishes a strong foundation for the subsequent CNN training and 

evaluation stages. 

3.4. Convolutional Neural Network (CNN) 

The deep learning process using Convolutional Neural Network (CNN) for mammography image 

analysis in this study was carried out through a structured sequence, beginning with data preprocessing 

and continuing to performance evaluation. To support this process, a lightweight CNN architecture was 

developed, consisting of three convolutional blocks followed by a classifier head (Brian, 2016; Basheer & 

Mohammed, 2013). The input to the model is a grayscale mammography image resized to 512 × 450 × 1. 

Each convolutional block employs a 3×3 convolutional kernel with “same” padding, followed by Batch 

Normalization and ReLU activation to stabilize training and introduce non-linearity. In the first two blocks, 

2×2 max-pooling is applied to progressively reduce spatial dimensions while preserving essential features. 

The final stage of the network consists of a fully connected, dense layer with a softmax activation function, 

which produces probability outputs for the three target classes: Benign, Cancer, and Normal. The detailed 

specification of this CNN architecture, including filter sizes, strides, and output dimensions for each layer, is 

presented in Table 3. 
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After splitting the dataset into training and testing sets, the initialized parameters (learning rate (LR), 

batch size (BS), and epochs) were applied to guide the training process. The CNN model was then trained 

using the proposed architecture summarized in Table 1, enabling the network to learn discriminative 

features and generate classification outputs for mammography images (Madhavi & Bobby, 2019; Khan & 

Arora, 2019; Moyya & Asaithambi, 2022). 

3.5. Performance Measures 

The performance of the CNN classification was evaluated using a confusion matrix, which categorizes 

predictions into four distinct outcomes: True Positives (TP), True Negatives (TN), False Positives (FP), and 

False Negatives (FN). By analyzing these outcomes, we can derive critical metrics such as accuracy, 

precision, recall, and F1-score, which provide a comprehensive understanding of the model’s efficacy in 

distinguishing between different classes. This evaluation is instrumental in refining the model and enhancing 

its predictive capabilities. The evaluation metrics are defined by the following equations: 

• Accuracy: Indicates overall correctness. 

As shown in Eq. (1) (Gupta, Anjum, Gupta, & Katarya, 2021), accuracy quantifies the overall 

correctness of the model's predictions. The accuracy is computed by dividing the sum of true positives 

(TP) and true negatives (TN) by the total number of predictions, including true positives, true negatives, 

false positives (FP), and false negatives (FN). This metric provides a broad assessment of the model's 

performance and serves as a foundational measure for evaluating classification systems. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                                                                                                          (1) 

 

• Precision: Reflects the reliability of positive predictions. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                                                          (2) 

 

Eq. (2) defines precision (Gupta, Anjum, Gupta, & Katarya, 2021), which assesses the reliability of the 

model's positive predictions. Precision is calculated as the ratio of true positives (TP) to the total 

number of predicted positive cases, including true positives and false positives (FP). A higher precision, 

as indicated by this equation, reflects a low false positive rate, signifying that the model consistently 

identifies true positives with minimal errors. This metric is especially critical in scenarios where false 

positives carry significant consequences. 

• Recall: Measures the correct identification of positive cases. 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                                                                                          (3) 

 

As outlined in Eq. (3) (Gupta, Anjum, Gupta, & Katarya, 2021), recall (or sensitivity) measures the 

model's ability to correctly identify positive cases. It is derived by dividing the number of true positives 

(TP) by the sum of true positives and false negatives (FN). A high recall value, as expressed by the 

formula, indicates that the model successfully detects a large proportion of actual positive cases, 

minimizing false negatives. This metric is particularly important in applications where failing to identify 

positive instances has serious implications, such as medical diagnostics. 

• F1-score: Provides a harmonic mean of precision and recall. 

The F1-score (Gupta, Anjum, Gupta, & Katarya, 2021), calculated as shown in Eq. (4), represents the 

harmonic mean of precision and recall, offering a balanced evaluation of the model's performance. This 

metric is especially valuable when dealing with imbalanced datasets, as it combines both precision and 

recall into a single value that accounts for the trade-off between these two metrics. A high F1-score, 

derived from this formula, indicates that the model performs well in identifying positive cases without 

compromising reliability or sensitivity. 
 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                                                                                              (4) 

  

4. Results and Discussion 
This section delves into the findings derived from the research and their comprehensive evaluation. 

The analysis and interpretation of these results are crucial for understanding the effectiveness and 

robustness of the methodologies employed. By examining the outcomes in detail, we can assess the 

performance of the proposed approaches, identify potential areas for improvement, and draw meaningful 

conclusions about the practical implications of the study. The results are presented in a structured manner, 
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Fig. 14. With a learning rate of 0.005, the Convolutional Neural Network achieved an accuracy of 99.55%. 

  

beginning with the dataset collection and followed by image preprocessing, model training, and 

performance evaluation. Each subsection provides a thorough examination of the respective steps, 

supported by relevant figures and tables, and quantitative metrics, to offer a clear and coherent narrative of 

the research findings. 

4.1. Preprocessing Results 

The preprocessing phase is essential for preparing mammography images for subsequent feature 

extraction and classification. Each step is designed to enhance the diagnostic quality of the images by 

removing extraneous artifacts, improving contrast, and highlighting diagnostically relevant structures. The 

results of these procedures are sequentially presented in Figs. 7–13, with each figure illustrating the 

transformation applied at a specific stage of the preprocessing pipeline.  

The procedure begins with image resizing (Fig. 7) to standardize all images to a uniform resolution of 

512 × 512 pixels. This is followed by image cropping (Fig. 8) to remove extraneous artifacts such as 

watermarks and retain only the breast tissue region. Next, the images are converted from RGB to grayscale 

(Fig. 9), ensuring consistency by eliminating unnecessary color variations. The Laplacian of Gaussian (LoG) 

filter (Fig. 10) is then applied to enhance important edges and highlight microcalcifications. This is followed 

by the Gabor filter (Fig. 11), which extracts orientation-based texture features relevant to detecting 

abnormalities. Global threshold segmentation (Fig. 12) is subsequently used to reduce noise further and 

delineate regions of interest, while the image sharpening step (Fig. 13) enhances the clarity of fine structural 

details. This comprehensive preprocessing pipeline demonstrates how each step progressively improves 

image quality, ensuring that the final dataset input into the CNN is standardized, reliable, and diagnostically 

meaningful. 

4.2. Training and Validation Results 

This study utilized a dataset comprising 8,914 mammography images, which were preprocessed and 

classified into three diagnostic categories: Benign, Cancer, and Normal. The dataset was split into two 

subsets to facilitate effective and representative model training, with 90% (8,027 images) allocated for 

training and 10% (887 images) reserved for testing. This partitioning ensures sufficient data for training 

while maintaining an independent set for unbiased performance evaluation. Detailed distribution of images 

per category is presented in Table 1.  

The Convolutional Neural Network (CNN) was trained using diverse parameter configurations, with 

a primary emphasis on the learning rate, batch size, and number of epochs. Table 2 delineates the validation 

accuracy and training duration attained under these conditions. The findings suggest that models trained 

with a comparatively elevated learning rate (0.05) exhibited inconsistent performance, yielding validation 

accuracies between 33% and 37%. In contrast, reduced learning rates (0.01, 0.005, and 0.001) 

consistently produced markedly higher validation accuracy, achieving up to 99–100% in specific 

configurations. This discovery underscores the significance of selecting a reduced learning rate to facilitate 

more successful convergence of the network.  
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Fig. 15. Confusion matrix for CNN classification on the test dataset (Learning Rate = 0.005). 

 

Table 4 

Convolutional Neural Network (CNN) classification results and evaluation. 

LR Epoch BS VF Time (min:s) 

Acc. Prec. Prec. Prec. Rec. Rec. Rec. Mic. Mic. Mic. 

F1 

(%) 

Val. 

(%) 

Benign 

(%) 

Cancer 

(%) 

Normal 

(%) 

Benign 

(%) 

Cancer 

(%) 

Normal 

(%) 

Prec. 

(%) 

Rec. 

(%) 

0.005 100 50 50 102:44 99.55 99,50 100 99.80 99.83 100 99.41 99.78 99.78 99.78 

Notes: Accuracy (Acc.), Precision (Prec.), Recall (Rec.), Micro-Averaged Precision (Mic. Prec.), Micro-Averaged Recall (Mic. Rec.), 

and Micro-Averaged F1-score (Mic. F1). 

 

The number of epochs was evaluated at both 10 and 20. The findings indicate that prolonging training 

to 20 epochs did not uniformly enhance accuracy, implying that the model had already attained 

convergence prior to the maximum iteration count. This suggests that extending epochs beyond a specific 

limit may not enhance performance, but instead prolongs processing time.  

The batch size significantly influenced efficiency and performance. Larger batch sizes, such as 50, 

generally decreased training time per epoch, but did not consistently produce higher accuracy compared 

to smaller batch sizes, such as 10. This finding suggests that smaller batch sizes may facilitate more precise 

parameter updates during training, although this comes with increased computational costs.  

Fig. 14 depicts the training process and validation curves, demonstrating a swift improvement in 

accuracy during the initial iterations, which subsequently stabilized near 100% after roughly 2,000 iterations. 

Simultaneously, the loss value diminished and settled around zero, further validating the efficacy of the 

selected hyperparameters.  

The findings collectively demonstrate that the optimal configuration for this model was achieved with 

a learning rate of 0.005, a batch size of 50, and 10–20 epochs, resulting in the most advantageous 

equilibrium between accuracy (99.55%) and computational efficiency. These findings underscore the 

critical significance of hyperparameter optimization in improving CNN efficacy for mammography image 

classification. The adjusted hyperparameters were later utilized in the final evaluation with the independent 

testing set, and the results are displayed in Fig. 15 and Table 4. 

4.3. CNN Architecture and Performance Evaluation 

The Convolutional Neural Network (CNN) used in this study was designed as a lightweight 

architecture consisting of three convolutional blocks followed by a classifier head. The input to the model is 

a grayscale mammography image resized to 512 × 450 × 1, ensuring uniformity across the dataset. Each 

convolutional block applies a 3 × 3 kernel with same padding, followed by Batch Normalization and ReLU 

activation to stabilize training and introduce non-linearity. In the first two blocks, 2 × 2 max-pooling is applied 

to reduce the spatial dimensions while preserving essential features progressively.  

The final stage of the network consists of a fully connected dense layer with a softmax activation 

function, producing three probability outputs corresponding to the target classes: Normal, Benign, and 

Cancer. The overall workflow of the CNN training process is summarized in Fig. 14, which illustrates the 

sequence from data input and preprocessing to training and classification. The detailed layer-by-layer 

configuration of the proposed CNN model is presented in Table 2, including kernel sizes, strides, and output 

dimensions.  

Moreover, the architecture was deliberately crafted to attain an equilibrium between computing 

efficiency and diagnostic precision. The model has a shallow architecture of three convolutional blocks, 

hence reducing the likelihood of overfitting while ensuring computational efficiency for extensive 
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mammography datasets. The incorporation of Batch Normalization and ReLU activation within each block 

improves stability and expedites convergence, while the softmax output layer offers interpretable probability 

distributions for clinical decision assistance. This approach guarantees that the CNN effectively captures 

essential texture and edge-related data while providing robust and dependable classification across the 

three diagnostic categories.  

Fig. 14 illustrates that the training process of the CNN model exhibits a rapid increase in accuracy 

during the initial iterations, reaching stable convergence after approximately 2,000 iterations. The validation 

accuracy achieved 99.55%, while the loss value steadily decreased and stabilized near zero, indicating that 

the model successfully minimized classification errors without signs of overfitting. The close alignment 

between training and validation curves further confirms the robustness of the selected parameters, 

particularly the learning rate (LR) of 0.005, which facilitated both high accuracy and effective convergence. 

These findings affirm that the proposed CNN architecture is capable of distinguishing between normal, 

benign, and malignant mammography images with high reliability, thereby validating the preprocessing 

pipeline and model configuration.  

Following the strong training performance shown in Fig. 14, the model was then evaluated on the 

unseen testing dataset to assess its generalization ability. The evaluation results, summarized in the 

confusion matrix presented in Fig. 15, demonstrate that the CNN achieved highly accurate classification 

across all three categories. Specifically, the model correctly identified 599 Benign, 672 Cancer, and 507 

Normal instances, with only four misclassifications in total (three benign images predicted as normal and 

one normal image predicted as benign). This corresponds to a test micro-accuracy of 99.78%, with per-

class F1-scores of 99.67% (Benign), 100.00% (Cancer), and 99.61% (Normal). The overall macro-F1 score 

reached 99.76%, while the weighted-F1 score was 99.78%. These results underscore the effectiveness of 

the proposed CNN model in accurately classifying mammography images and highlight its robustness for 

practical application in early breast cancer detection.  

Fig. 15 displays the confusion matrix for the CNN classification applied to the testing dataset, utilizing 

a learning rate of 0.005. The algorithm attained exceptional predictive accuracy, properly classifying 599 

Benign, 672 Cancer, and 507 Normal pictures, with merely four occurrences misclassified (three benign 

cases identified as normal and one normal case identified as benign). The results demonstrate the model's 

robust ability to differentiate among the three diagnostic categories with negligible error. Table 4 presents a 

comprehensive assessment of performance indicators, encompassing accuracy, precision, recall, and F1-

score for each category, based on these results. The model achieved a validation accuracy of 99.55%, with 

per-class precision and recall metrics regularly exceeding 99%, and an overall F1-score of 0.9975. The 

uniformity across several evaluation parameters validates both the resilience of the proposed CNN 

architecture and the efficacy of the preprocessing pipeline in generating dependable and diagnostically 

significant classifications.  

Table 4 illustrates the exceptional reliability and robustness of the proposed CNN model in the 

classification of mammography pictures. The model exhibits exceptional generalization to unknown data, 

evidenced by a validation accuracy surpassing 99% and consistently high precision, recall, and F1-scores 

across all classes. The results validate that the preprocessing pipeline, in conjunction with the lightweight 

CNN architecture, establishes a very efficient framework for the early identification of breast cancer. This 

evaluation is followed by an explanation that elaborates on the architectural implementation of the CNN 

model and its contribution to accomplishing these goals. 

4.4. Performance Evaluation 

The ultimate efficacy of the suggested CNN model was evaluated utilizing the independent testing 

set. Fig. 15 illustrates that the confusion matrix indicates the model attained exceptional classification 

accuracy across all three categories, with merely four misclassified samples out of 887. Table 4 elaborates 

on the evaluation measures, indicating a micro-accuracy of 99.78%, an average precision of 99.74%, an 

average recall of 99.77%, and a comprehensive F1-score of 99.75%. Per-class F1-scores were consistently 

elevated, attaining 99.67% for Benign, 100.00% for Cancer, and 99.61% for Normal. These findings validate 

the resilience of the proposed CNN architecture and the efficacy of the preprocessing pipeline in 

guaranteeing accurate categorization of mammography pictures.  

This model's primary strength is its lightweight construction, enabling excellent precision alongside 

computing efficiency. The implementation of three convolutional blocks, accompanied by batch 

normalization and max pooling, facilitated the extraction of distinctive features while preventing overfitting, 

and the preprocessing processes markedly improved image quality. Notwithstanding these advantages, the 

model possesses specific constraints. The study was initially performed on the Mini-DDSM dataset, which, 
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despite its widespread utilization, may not adequately represent the heterogeneity of real-world 

mammography pictures across diverse populations and imaging modalities. Secondly, although the model 

attained near-perfect accuracy on the testing set, its generalizability to larger, more heterogeneous datasets 

requires validation.  

The suggested approach exhibits competitive, and in certain instances superior, performance relative 

to prior work on mammography picture classification. Earlier studies utilizing conventional CNN 

architectures on the DDSM dataset indicated accuracies of 93% and 97%, whereas investigations applying 

more sophisticated deep learning models, such as ResNet or DenseNet, generally attained accuracies of 

97% to 99%. This study's lightweight CNN achieved an accuracy of 99.78%, demonstrating that well-

structured shallow architectures, when paired with efficient preprocessing, may compete with or exceed 

the performance of deeper, more resource-intensive models. These findings emphasize that the proposed 

CNN not only attains state-of-the-art performance but also provides a computationally efficient framework 

suitable for implementation in clinical assistance systems for early breast cancer identification. 

4.5. Discussion 

This study's results indicate that the suggested lightweight CNN architecture, in conjunction with a 

thorough preprocessing pipeline, can achieve near-perfect performance in categorizing mammography 

pictures into Normal, Benign, and Cancer categories. The model achieves an accuracy of 99.78% and 

consistently demonstrates elevated precision, recall, and F1-scores, confirming that critical diagnostic 

features, including microcalcifications and tissue patterns, are successfully recorded and assimilated. These 

findings underscore the significance of meticulously crafted preprocessing stages, which enhanced image 

quality and improved the CNN's capacity to extract discriminative features, despite its relatively superficial 

architecture.  

The elevated classification performance suggests considerable promise for aiding radiologists in the 

early identification of breast cancer. By automating the classification of mammography images, the model 

can alleviate diagnostic workload, diminish human error, and furnish a dependable second opinion to 

enhance clinical decision-making. Timely and precise differentiation between benign and malignant 

abnormalities is essential for establishing suitable patient management strategies, hence enhancing survival 

rates and treatment results. Consequently, the proposed methodology emphasizes the role of deep learning 

as an auxiliary tool in contemporary medical imaging techniques.  

Notwithstanding the encouraging outcomes, there remains room for improvement to advance further. 

The model was trained and evaluated using the Mini-DDSM dataset, which, despite being well-established, 

may not comprehensively reflect the diversity of clinical mammography data found in real-world scenarios. 

Subsequent research should encompass assessments on bigger and more diverse datasets to confirm 

generalizability. Moreover, incorporating sophisticated augmentation techniques, attention mechanisms, or 

transfer learning methodologies could significantly improve robustness and adaptability. Extending the 

paradigm to incorporate multi-modal imaging data, such as the integration of mammography with ultrasound 

or MRI, gives a promising opportunity to enhance diagnostic efficacy.  

In conclusion, the discourse highlights that although the proposed CNN exhibits exceptional 

performance and significant utility in facilitating breast cancer screening, its overall influence will rely on 

ongoing enhancement, validation with real-world clinical data, and incorporation into current healthcare 

systems. 

 

5. Conclusions 
This study introduced a streamlined Convolutional Neural Network (CNN) model integrated with an 

extensive preprocessing pipeline for the categorization of mammography images. The preprocessing 

stages, comprising resizing, cropping, grayscale conversion, Laplacian of Gaussian (LoG) filtering, Gabor 

filtering, global threshold segmentation, and image sharpening, were effective in improving image quality 

and highlighting diagnostically pertinent features before model training.  

The suggested CNN attained consistently superior performance, with a validation accuracy of 

99.55% and a test accuracy of 99.78%. The findings were additionally corroborated by F1-scores 

surpassing 0.99 in all diagnostic categories (Normal, Benign, and Cancer). The results validate that the 

model can consistently identify essential characteristics, including microcalcifications and tissue 

architectures, hence guaranteeing strong classification efficacy. This result was achieved with a relatively 

shallow CNN comprising only three convolutional blocks, illustrating that a lightweight architecture, when 

combined with efficient preprocessing, can yield accuracy equivalent to or exceeding that of more intricate 

deep learning models.  
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The proposed technique highlights the capability of CNN-based systems to assist radiologists in the  

early diagnosis of breast cancer from a clinical standpoint. This approach enhances classification accuracy 

and minimizes diagnostic errors, so facilitating more dependable screening, prompt intervention, and 

ultimately better patient outcomes.  

In contrast to previous studies that generally indicated accuracies between 93–97% for standard 

CNNs and 97–99% for more complex designs like ResNet and DenseNet, the current research 

demonstrated enhanced performance. This illustrates that computationally efficient models can achieve 

state-of-the-art outcomes, rendering them more appropriate for practical clinical applications where 

resources and time are frequently limited.  

Subsequent research must confirm the generalizability of this methodology by implementing it on 

larger and more varied datasets that encompass various imaging circumstances and demographics. Further 

enhancements, including the integration of sophisticated augmentation strategies, transfer learning, or 

attention mechanisms, along with the expansion of the framework to multi-modal imaging—such as the 

combination of mammography with ultrasound or MRI—could enhance the robustness and clinical 

applicability of the system.  
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