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Abstract

Breast cancer poses a considerable challenge in Indonesia, resulting in numerous fatalities. This study
aims to improve the accuracy and efficiency of early breast cancer diagnosis by leveraging modern image
processing and artificial intelligence. The dataset used is the Mini-DDSM (Mini Digital Database for
Screening Mammography), taken from Kaggle and vetted by radiologists into a Region of Interest (ROI)
consisting of three categories: Benign, Cancer, and Normal. The methodology encompasses
comprehensive image preprocessing, which includes resizing, cropping, RGB-to-grayscale conversion,
Laplacian of Gaussian (LoG) filtering, Gabor filtering, global threshold segmentation, and image
enhancement. A Convolutional Neural Network (CNN) is employed for classification purposes. Ninety
percent of the images are allocated for training, while 10% are designated for testing, with critical
parameters such as learning rate, batch size, and epochs being tuned throughout the training process.
The CNN architecture was assessed based on recognition rate, error rate, epoch count, and training
duration. The results provide a flawless validation accuracy of 100% over 32 ftrials. The findings
demonstrate that the suggested method markedly enhances early breast cancer identification using
microcalcification analysis in mammography images, assisting medical professionals in early diagnosis
and potentially elevating patient recovery rates through prompt detection and treatment.

Keywords: breast cancer, Convolutional Neural Network, digital image processing, Gabor filter,
mammography, microcalcification.

1. Introduction

Worldwide, cancer ranks high among the top killers. In 2018, there were 18.1 million new cases of
cancer and 9.6 million deaths worldwide, according to figures from the World Health Organization (WHO)
(World Health Organization, 2022). According to projections, the number of cancer-related deaths would
surpass 13.1 million by 2030. Breast, lung, cervical, liver, lip, and oral cavity cancers were the leading
causes of cancer-related fatalities among the 1.4 million cancer-related deaths and 2.2 million new cases
recorded by the World Health Organization for the Southeast Asia region in 2015. Indonesia is facing a
serious health crisis due to the alarmingly high incidence rates of breast cancer, the most common cancer
in women. The most common cancer diagnosis in Indonesia in 2022 was breast cancer, with 408,661 new
cases (International Agency for Research, 2022). Age, heredity, early menarche, reproductive history,
obesity, alcohol use, and environmental variables are the main determinants of breast cancer risk. Breast
cancer screenings, including self-examinations (SADARI, known as self-breast examinations by
Indonesians), clinical breast exams (SADANIS, known as clinical breast examinations by Indonesians), and
mammography, are an important part of primary and secondary preventive efforts. When it comes to finding
breast cancer in its early stages, mammography is the imaging technique of choice. It involves both
screening and diagnostic examinations aimed at identifying abnormalities in breast tissue and physical
changes in the breast (Iranmakani, et al., 2020; Guzman-Cabrera, et al., 2013; Sama & Baneamoon, 2017;
Singh & Gupta, 2015; Basheer & Mohammed, 2013; Al-masni, et al., 2017). Mammography is highly
sensitive in detecting lumps and microcalcifications, which can indicate the presence of abnormal cells or
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malignant tumors (Logullo, Prigenzi, Nimir, Franco, & Campos, 2022).

Previous studies have shown that mammographic imaging techniques are highly effective in
detecting breast cancer (Khoulgi & Idrissi, 2020). However, the visual limitations and subjectivity of human
interpretation can lead to diagnostic inaccuracies. Therefore, the development of computer-based systems,
particularly those employing artificial intelligence (Al), is essential to enhance diagnostic accuracy and
efficiency. Machine learning and deep learning algorithms have been utilized in a number of studies to
analyze mammographic images using artificial intelligence (Fadil, Jackson, Majd, Ghazi, & Kaabouch, 2019;
Khoulgi & Idrissi, 2020). For example, Madhavi and Bobby's research showed that LS-SVM with Random
Forest classification with Gabor filters produced very accurate and sensitive mammography results
(Narasimhaiah & Nagaraju, 2023). Finding encouraging results, Khan and Arora investigated thermography
utilizing Gabor filters and SVM classification as a non-invasive alternative to mammography (Salama & Aly,
2021). Combinations of machine learning algorithms based on Gabor filters have recently shown promising
results in the identification of breast cancer (Podgornova & Sadykov, 2019; Wang, et al., 2024).

To advance these efforts, this study deliberately selects a combination of Gabor filters and a deep
learning approach for specific, compelling reasons. The decision to employ Gabor filters is rooted in their
exceptional ability to capture multi-scale and multi-orientation texture information. This characteristic is
particularly advantageous for identifying microcalcifications, which often manifest as subtle, high-frequency
textural patterns against a complex tissue background in mammograms. By simulating the response of the
human visual cortex, Gabor filters excel at enhancing edges and local textural features, making them a
powerful tool for preprocessing images to accentuate diagnostically relevant regions that might otherwise
be missed (Kamil, 2020).

Furthermore, this study adopts a Convolutional Neural Network (CNN), a state-of-the-art deep
learning architecture, to address the limitations of traditional machine learning approaches. Unlike
conventional methods that rely on manually engineered features, CNNs offer the distinct advantage of
automatically learning hierarchical feature representations directly from the image data. Through this end-
to-end learning process, the model is able to capture intricate and abstract patterns indicative of
malignancy, ranging from simple edges in the early layers to more complex shapes in the deeper layers.
This capability renders CNNs particularly robust and effective for complex medical image classification
tasks.

This research, therefore, proposes a synergistic methodology that combines the targeted feature
enhancement of Gabor filters with the powerful automated classification of CNN (Annisa, Lubis, & Najmita,
2020; Fuadi, 2023). The goal is to develop a highly accurate system for early breast cancer detection by
analyzing microcalcifications in the Mini-DDSM dataset. By integrating these advanced techniques, this
study aims to improve the manual interpretation of mammographic pictures, provide a reliable decision
support tool for medical practitioners, and ultimately contribute to increasing patient recovery rates through
more timely and precise diagnosis (Alfayat & Whardana, 2024; Whardana, Mufti, Hermawan, & Aziz, 2024;
Whardana & Putri, 2025).

2. Theoretical Background

Subsection 2.1 will offer a comprehensive overview of the definition, progression, and essential
characteristics of breast cancer to elucidate the principles and mechanisms of breast cancer detection
methods.
2.1. Breast Cancer

Cancer develops when normal cells sustain DNA damage, leading to alterations in their DNA. These
cells alter and start to proliferate and expand faster than usual. After a certain age, cancer cells stop
replicating and become invasive, suppressing or even killing off healthy cells in the body. According to
American Cancer Society, breast cancer is a specific kind of cancer that develops in the breast's supporting
tissues, glandular cells, and glandular ducts; nevertheless, it does not affect the breast skin (American
Cancer Society, 2014).
2.2. Mammography

Breast cancer is a malignancy that affects the mammary glands and adjacent tissues within the
breast. To mitigate the risk of breast cancer, early screening, including medical evaluations as outlined by
Dyanti & Suariyani (2016), is essential. In this context, a prevalent diagnostic technique employed by
physicians is mammography, which utilizes X-rays as a light source to generate images. The output
produced from this mammography assessment is designated as a mammographic image, as seen in Fig. 1
(Brahimetaj, et al., 2022; Cardona, Orozco, & Alvarez, 2014; Zamir, et al., 2021; Leong, Hasikin, Lai, Zain,
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Fig. 1. Breast mammography image.

L

Fig. 2. Mass mammograbhy image.

& Azizan, 2022).

Mammography is a medical imaging procedure that utilizes low-dose X-rays to visualize the internal
structure of breast tissue, producing what is known as a mammographic image. The image highlights
different densities, with glandular tissue appearing as bright white areas due to higher density, while fatty
tissue appears darker. This type of imaging is essential for early detection and diagnosis of breast cancer,
as it allows for the identification of abnormalities such as irregular masses, blurred boundaries, or grouped
microcalcifications. Early detection through mammography significantly improves the chances of successful
treatment by identifying cancer before clinical symptoms emerge. Additionally, digital mammography has
enhanced image resolution and introduced tools like Computer-Aided Detection (CAD) systems, which help
radiologists identify suspicious areas with greater accuracy. As a non-invasive diagnostic method,
mammography is a cornerstone in breast cancer screening programs, particularly for women over 40 or
those with genetic predispositions, offering a critical advantage in reducing breast cancer mortality rates
(Guo, et al., 2022; Liew, Hameed, & Clos, 2021; Zhao, Chen, & Cai, 2022).

2.3. Types of Breast Cancer

Mammographic images are crucial for detecting breast cancer, especially through the identification
of mass lesions, known as masses, and the detection of microcalcifications. On mammography, breast
cancers, whether benign or malignant, typically manifest as lumps. A mass denotes a region containing a
lesion observable from two distinct projections in mammographic imaging, as illustrated in Fig. 2.

The presence of microcalcifications is an additional characteristic of breast cancer. The deposition
of calcium minerals in breast tissue, known as lobular or ductal tissue, results in microcalcifications that
appear as minute stains or patches. Fig. 3 illustrates that microcalcifications serve as a significant signal of
potential breast cancer in mammographic images.

Using mammography technology, doctors can more thoroughly and precisely identify the type of
breast cancer, providing a solid basis for further diagnosis and appropriate treatment planning. Awareness
of the importance of understanding the type of breast cancer through mammography images is the first step
in early detection and effective treatment of this disease.




Early Breast Cancer Detection ... Journal of Information Technology and Cyber Security 3(2) July 2025: 128-146

:

Fig. 3 MicrocalciﬁcétioH mammography image.

2.4. Digital Image Processing

Digital image processing involves analyzing images using computer algorithms to enhance image
quality, extract embedded data, and transform images for easier human interpretation or analysis. It begins
with two core implementations: improving visual data for accurate interpretation and organizing visual
information for autonomous device recognition. The primary focus of the latter is to extract visual data in a
computer-processable format. An image can be viewed as a 2D function of light intensity, f(x,y), with
spatial coordinates (x,y) representing positions in the image plane. The brightness or gray level at each
point (x,y) corresponds to the value of f. Image processing is generally categorized into three types: low-
level, mid-level, and high-level processing. Low-level processing includes basic operations like image
rotation, reading, resizing, histogram normalization, and color conversion, which modify the original image.
Mid-level processing involves extracting information from low-level processes, such as edge detection.
High-level processing enhances mid-level processing with artificial intelligence integration (Singh & Goel,
2020).

3. Methods

The research methodology employed in this study is meticulously designed to ensure a
comprehensive analysis and accurate results. This section provides an in-depth explanation of the
processes and techniques applied throughout the research. The methodical approach encompasses
various stages, from data collection and preprocessing to the implementation and evaluation of advanced
machine learning models. Each step is carefully orchestrated to ensure precision and reliability, thereby
enhancing the overall validity of the study's findings. The following subsections detail these processes,
beginning with the system flowchart that provides a visual representation of the workflow.
3.1. System Flowchart

We design the system flowchart whose main function is to provide a better understanding of the
processes that occur within the system. Fig. 4 is the system flowchart design used in breast cancer early
detection research through microcalcification analysis with Gabor filters and deep learning Convolutional
Neural Network (CNN) (Mohimont, Alin, Rondeau, Gaveau, & Steffenel, 2022; Zhang & Lu, 2021; Sarker,
2021; Fuadi, 2023).
3.2. Dataset Collection and Selection

The secondary dataset used in this research was obtained from Kaggle, an open-source platform
that provides publicly available medical imaging resources. Specifically, the dataset is the Mini Digital
Database for Screening Mammography (Mini-DDSM), a compressed version of the original DDSM curated
by the University of South Florida (USF). This collection contains 9,684 PNG-formatted mammography
images sourced from patients aged 25 to 90 years (median age of 50), categorized into three classes: 2,728
Normal, 3,360 Benign, and 3,596 Cancer cases. During the dataset selection stage, images with edge noise
that could affect preprocessing were removed. After the refinement process, a total of 8,914 images were
retained, consisting of 2,544 Normal, 3,006 Benign, and 3,364 Cancer samples, which were subsequently
used for preprocessing and model training. Examples of the dataset categories are presented in Fig. 5.
3.3. Preprocessing

The preprocessing of mammography images consists of several essential steps aimed at improving
image quality before classification using Convolutional Neural Networks (CNN). These steps are designed
to minimize noise or artifacts that may interfere with diagnostic accuracy. The process begins with resizing
all images to a standardized resolution of 512 x 512 px using MATLAB's imresize function, ensuring uniform
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Fig. 4. Flowchart of the proposed classification method.

Cancer (3596 files
l
& 0
|
WOOA NS 1LEFT.CC WOL.C 00311 2GMT W2 COOFNILEFT M W03 C 0031 1 RGHT WO4 COOMILEFTLC
1.81k8 S353x8 S5897k8 S8.87 «B 58148

Sy
‘J( ) &. 'v"\

WS C 0080 1 RGHT, WO C.O0SOILEFT M., 10072, C 00601 RIGHT_ 008 C O0S0MEFT.C 0L D08BS 1 RIGHT,
L744%8 463548 43458 46228 33798

Fig. 5. Example of Kaggle Mini-DDSM dataset.

dimensions and eliminating unnecessary variations across the dataset. The overall workflow of this
preprocessing stage is illustrated in Fig. 4, where each step is systematically arranged to prepare the images
for further enhancement and feature extraction. Following the resizing step, the next stage involves image
cropping, which focuses on removing irrelevant regions and retaining diagnostically significant breast tissue
areas for subsequent analysis.

As illustrated in Fig. 4, the preprocessing pipeline systematically organizes the key steps required
before classification. Starting from the dataset input, the images undergo resizing, cropping, and grayscale
conversion to standardize their format. Subsequent filtering techniques, such as Laplacian of Gaussian and
Gabor filters, are applied to enhance edge details and capture texture-based features. Additional processes,
including threshold segmentation and image sharpening, further refine the data by reducing noise and
emphasizing diagnostically relevant structures. This sequential workflow ensures that the input images are
optimized for CNN classification, ultimately supporting more accurate and reliable detection of breast
abnormalities.

Fig. 6 presents the flowchart of the CNN model used for training in this study. The diagram outlines
the sequential process beginning with the input of preprocessed mammography images, followed by
splitting the dataset into training and testing sets, initializing learning parameters, and proceeding with CNN
training (Nagane & Mulani, 2021). The final stage produces classification outputs into three categories:
Benign, Cancer, and Normal. This flow complements the architectural details summarized in Table 3, where
each convolutional, pooling, and fully connected layer contributes to feature extraction and decision-
making. Together, the flowchart and the architectural table provide a comprehensive view of how the CNN
model is structured and executed to achieve reliable breast cancer image classification (Jothiaruna, Sundar,
& Ahmed, 2021; Kadir, Nugroho, Susanto, & Santosa, 2011; Saifullah, Sunardi, & Yudhana, 2016; Iriyanto
& Zaini, 2014; Annisa, Lubis, & Najmita, 2020).
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Fig. 6. Flowchart of the training process for the Convolutional Neural Network (CNN) model. The illustration of the
CNN model is inspired by Gu, Wang, Hong, & Gui (2019).

(a) (b)

Fig. 7. Image preprocessing steps: (a) Original image, and (b) Resized image.

3.3.1. Image resizing

Image preprocessing is a fundamental step in the development of image-based machine learning
models, particularly in medical imaging. This step ensures the consistency, quality, and usability of the input
data for subsequent processing and analysis. By standardizing various image attributes such as size,
resolution, and intensity, preprocessing facilitates accurate feature extraction and model training. This
process is essential for eliminating variability in raw data and improving the robustness and generalizability
of the model. One of the critical preprocessing operations applied in this study is image resizing, which is
discussed in the following subsection.

Image resizing changes the mammography image to a size of 512 x 512, which aims to equalize the
size of the obtained image and prepare it for input to training using a Convolutional Neural Network (CNN).
The example result of the image that has been resized is shown in Fig. 7.

Fig. 7 illustrates the outcome of the image resizing process as part of the image preprocessing stage.
Fig. 7(a) shows the original mammography image, while Fig. 7(b) depicts the resized image with dimensions
standardized to 512 x 512 px. This resizing step is essential for ensuring uniformity across all input images,
thereby facilitating efficient and consistent training using CNNs. The comparison between the original and
resized images highlights the importance of this preprocessing step as it enhances the performance of
subsequent image analysis and model training phases.

3.3.2. Image cropping

The next preprocessing step in this study is image cropping. After resizing each mammography
image to 512 x 512 px, cropping is applied to remove extraneous artifacts such as watermarks and to retain
only the relevant breast tissue region. This operation produces an image of 512 x 450 px, as illustrated in
Fig. 8, thereby improving focus and reducing noise for subsequent feature extraction and classification.
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Fig. 8. Image preprocessing: Example of a cropped image.

Fig. 9. Image Preprocessing: Example of image grayscale resullt.

d

Fig. 10. Image preprocessing: Example of a grayscale-converted image.

Fig. 8 presents the cropping result of mammography images, focusing on the region of interest (ROI).
This step isolates the relevant breast tissue area while eliminating background information that may
introduce noise. Highlighting the ROI supports more accurate feature extraction, thereby improving the
performance of subsequent classification tasks.

3.3.3. Red, Green, Blue (RGB) to Grayscale Conversion

The next preprocessing step in this study is the conversion of mammography images from Red,
Green, and Blue (RGB) format to grayscale. Fig. 9 shows a grayscale image. This transformation is
necessary because mammography images are inherently grayscale, and the presence of RGB pixels can
cause unnecessary variation. Converting the image to grayscale eliminates this inconsistency, resulting in
a uniform black-and-white representation.

Fig. 9 presents the result of converting the mammography image from RGB to grayscale. This
preprocessing is necessary because mammographic images are inherently grayscale; residual RGB pixels
may introduce unwanted variation. The conversion removes these discrepancies and produces a uniform
black-and-white representation that improves contrast and highlights diagnostically relevant structures for
later analysis.

3.3.4. Laplacian of Gaussian (LoG) filtering

The Laplacian of Gaussian (LoG) filter was applied in this study to sharpen the edges of
mammaography images and highlight the Region of Interest (ROI). This method was designed to improve the
visibility of disturbances or abnormalities in breast tissue, thereby supporting the identification of potential
abnormalities. The ROI references were obtained from the Mini-DDSM dataset available on Kaggle, which
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Fig. 11. Gabor filter process.

Fig. 12. Global threshold segmentation.

was curated by radiographers. In this study, the LoG parameters were set with a filter size of 50 and a
Gaussian scale (o) of 5, which controls the spread of light values on pixels. Fig. 10 shows the results of
applying the LoG filter (Ghosal, Mandal, & Sarkar, 2018).

Fig. 10 presents the result of applying the LoG filter to a mammography image. The filter successfully
enhances the edges of breast tissue structures and clearly delineates the ROI. This enhancement facilitates
the identification of potential abnormalities by improving contrast and highlighting diagnostically significant
features, thereby supporting subsequent stages of image analysis and classification.

3.3.5. Gabor filtering

The Gabor filter is one of the most important preprocessing steps in this study, as it extracts texture-
based features that capture the orientation of pixel intensity variations in the image. Fig. 10 shows the Gabor
filter process. This process improves the visibility of microcalcifications in mammography images by
highlighting directional patterns. This filter operates using two main parameters: wavelength (A), which
determines the spatial frequency of light that can be detected, and orientation (8), which determines the
direction of the wave (Kamil, 2020). In this study, the wavelength was set to 3.5, while four orientations were
applied at 0°, 45°, 90°, and 135°, enabling the detection of microcalcifications in various directional fields.

Fig. 11 illustrates the outcome of applying the Gabor filter to a mammography image during the
preprocessing stage. The filter enhances the detection of microcalcifications by emphasizing texture and
edge details in multiple orientations. The directional patterns generated through the Gabor filter highlight
diagnostically significant structures, thereby facilitating more accurate feature extraction and supporting
subsequent classification and analysis.

3.3.6. Global threshold segmentation

After the application of the Gabor filter, this study employed global threshold segmentation to further
refine the image quality. This technique reduces noise by distinguishing between foreground and
background pixels based on a fixed threshold value (Houssein, Helmy, Oliva, EIngar, & Shaban, 2021). In
this study, a threshold value of 0.4 was selected to suppress irrelevant artifacts, such as dust particles, that
could obscure diagnostically significant features. This step ensures greater focus on microcalcification
regions, thereby enhancing their structural visibility for subsequent classification tasks. The result of this
process is presented in Fig. 12.

The outcome of the global threshold segmentation is presented in Fig. 12, which demonstrates the
effective separation of foreground and background pixels in the mammography image. The application of a
threshold value of 0.4 successfully suppresses irrelevant noise, such as dust artifacts, and highlights diag-
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Fig. 13. Image sharpen result.

Table 1
Dataset distribution for preprocessing, labeling, and data splitting.
Label  Total Samples Training Data (90%) Testing Data (10%)

Benign 3,006 2,290 254
Cancer 3,364 2,705 301
Normal 2,544 3,028 336
Table 2
Training results at varying learning rates, epochs, mini-batch sizes, and validation frequencies.
Learning Rate Epochs Mini-Batch Size Validation Frequency Tra|(rr1:]rilrg]gls"|;|me Validation Accuracy (%)
0.05 10 10 10 36:24 37.71
0.05 10 10 50 12:33 33.78
0.05 10 50 10 12:34 37.71
0.05 10 50 50 09:05 37.71
0.05 20 10 10 84:17 33.78
0.05 20 10 50 25:30 33.78
0.05 20 50 10 24:26 37.71
0.05 20 50 50 54:59 37.71
0.01 10 10 10 30:09 37.71
0.01 10 10 50 12:35 33.78
0.01 10 50 10 12:41 100.00
0.01 10 50 50 08:48 37.71
0.01 20 10 10 60:30 37.71
0.01 20 10 50 25:04 37.71
0.01 20 50 10 25:06 100.00
0.01 20 50 50 17:25 100.00
0.005 10 10 10 32:06 37.71
0.005 10 10 50 12:36 37.71
0.005 10 50 10 12:48 99.66
0.005 10 50 50 09:28 99.66
0.005 20 10 10 62:05 99.33
0.005 20 10 50 24:45 100.00
0.005 20 50 10 25:04 100.00
0.005 20 50 50 17:27 100.00
0.001 10 10 10 34:41 100.00
0.001 10 10 50 13:31 100.00
0.001 10 50 10 13:19 100.00
0.001 10 50 50 09:10 100.00
0.001 20 10 10 60:21 100.00
0.001 20 10 50 24:38 99.66
0.001 20 50 10 26:45 99.66
0.001 20 50 50 18:28 99.55

nostically significant regions. As shown in the figure, this method isolates the microcalcification area with
greater clarity, thereby enhancing structural visibility and improving the reliability of subsequent image
classification tasks.
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Table 3
Layers’ description for the proposed CNN architecture.
Layer Kernel/Units Stride Output Shape
0 Input - - 512 x 450 % 1
1 Conv2D 3 x 3, 8filters 1 512x 450 % 8
2 BatchNorm + RelLU - - 512x 450 % 8
3 MaxPool2D 2% 2 2 256 X 225 % 8
4 Conv2D 3x 3, 16 filters 1 256 X 225 x 16
5 BatchNorm + RelLU - - 256 X 225 % 16
6 MaxPool2D 2% 2 2 128 X 112 % 16
7 Conv2D 3 % 3, 32 filters 1 128 X 112 % 32
8 BatchNorm + Rel.U - - 128 X 112 % 32
9 Flatten/ GlobalAvgPooling2D - - Vector (128 X 112 x 32)
10 Dense (Classifier) 3 units - 3
11 Softmax - - 3 (class probabilities)

3.3.7. Image sharpening

The image sharpening process is applied to enhance the quality of mammography images by
increasing edge definition and improving the clarity of diagnostically relevant structures. This method utilizes
the Image Sharpen function in MATLAB to emphasize fine details and highlight the boundaries of
microcalcifications, thereby supporting more accurate analysis in subsequent stages. As shown in Fig. 13,
the sharpening process produces a clearer and more focused representation of the breast tissue, enabling
better identification of critical features while reducing ambiguity in the image interpretation.

Fig. 13 shows the result of applying the Image Sharpen method to mammography images. This
process enhances fine details and clarifies the boundaries of microcalcifications, making the structures
more distinct and easier to interpret. By improving visual sharpness, this step strengthens the accuracy of
subsequent analysis, particularly in identifying critical features within breast tissue.

After the preprocessing stage, all images produced through the Image Sharpen process are
categorized into three classes: Benign, Cancer, and Normal, as presented in Table 1. From a total of 8,914
available images, the dataset is split into 90% for training and 10% for testing. This splitting provides a
balanced representation of each class, ensuring that the Convolutional Neural Network (CNN) model can
be trained with an appropriate data distribution.

Furthermore, the results of CNN training using the dataset were evaluated under various
combinations of learning rate parameters, number of epochs, mini-batch size, and validation frequency (VF).
Table 2 summarizes the model performance for each configuration. The results indicate that models trained
with a relatively large learning rate of 0.05 yielded low and unstable validation accuracy. In contrast, smaller
learning rates of 0.01, 0.005, and 0.001 achieved significantly higher accuracy, with some configurations
reaching 99-100%. These findings highlight the critical role of selecting appropriate training parameters to
optimize CNN performance in mammography image classification.

These experimental outcomes confirm that the adjustment of learning rate parameters has a
substantial impact on model performance. By identifying optimal configurations that achieve stable and high
validation accuracy, the study establishes a strong foundation for the subsequent CNN training and
evaluation stages.

3.4. Convolutional Neural Network (CNN)

The deep learning process using Convolutional Neural Network (CNN) for mammography image
analysis in this study was carried out through a structured sequence, beginning with data preprocessing
and continuing to performance evaluation. To support this process, a lightweight CNN architecture was
developed, consisting of three convolutional blocks followed by a classifier head (Brian, 2016; Basheer &
Mohammed, 2013). The input to the model is a grayscale mammography image resized to 512 x 450 x 1.
Each convolutional block employs a 3x3 convolutional kernel with “same” padding, followed by Batch
Normalization and ReLU activation to stabilize training and introduce non-linearity. In the first two blocks,
2x2 max-pooling is applied to progressively reduce spatial dimensions while preserving essential features.
The final stage of the network consists of a fully connected, dense layer with a softmax activation function,
which produces probability outputs for the three target classes: Benign, Cancer, and Normal. The detailed
specification of this CNN architecture, including filter sizes, strides, and output dimensions for each layer, is
presented in Table 3.
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After splitting the dataset into training and testing sets, the initialized parameters (learning rate (LR),
batch size (BS), and epochs) were applied to guide the training process. The CNN model was then trained
using the proposed architecture summarized in Table 1, enabling the network to learn discriminative
features and generate classification outputs for mammography images (Madhavi & Bobby, 2019; Khan &
Arora, 2019; Moyya & Asaithambi, 2022).

3.5. Performance Measures

The performance of the CNN classification was evaluated using a confusion matrix, which categorizes
predictions into four distinct outcomes: True Positives (TP), True Negatives (TN), False Positives (FP), and
False Negatives (FN). By analyzing these outcomes, we can derive critical metrics such as accuracy,
precision, recall, and F1-score, which provide a comprehensive understanding of the model’s efficacy in
distinguishing between different classes. This evaluation is instrumental in refining the model and enhancing
its predictive capabilities. The evaluation metrics are defined by the following equations:

e Accuracy: Indicates overall correctness.
As shown in Eq. (1) (Gupta, Anjum, Gupta, & Katarya, 2021), accuracy quantifies the overall
correctness of the model's predictions. The accuracy is computed by dividing the sum of true positives
(TP) and true negatives (TN) by the total number of predictions, including true positives, true negatives,
false positives (FP), and false negatives (FN). This metric provides a broad assessment of the model's
performance and serves as a foundational measure for evaluating classification systems.

TP +TN

Accur =
ccu acy TP+TN + FP + FN

(1)

o Precision: Reflects the reliability of positive predictions.

TP
TP+FP

Precision =

()

Eq. (2) defines precision (Gupta, Anjum, Gupta, & Katarya, 2021), which assesses the reliability of the
model's positive predictions. Precision is calculated as the ratio of true positives (TP) to the total
number of predicted positive cases, including true positives and false positives (FP). A higher precision,
as indicated by this equation, reflects a low false positive rate, signifying that the model consistently
identifies true positives with minimal errors. This metric is especially critical in scenarios where false
positives carry significant consequences.

e Recall: Measures the correct identification of positive cases.

TP
Recall = ——
TP + FN

(3)

As outlined in Eq. (3) (Gupta, Anjum, Gupta, & Katarya, 2021), recall (or sensitivity) measures the
model's ability to correctly identify positive cases. It is derived by dividing the number of true positives
(TP) by the sum of true positives and false negatives (FN). A high recall value, as expressed by the
formula, indicates that the model successfully detects a large proportion of actual positive cases,
minimizing false negatives. This metric is particularly important in applications where failing to identify
positive instances has serious implications, such as medical diagnostics.
e F1-score: Provides a harmonic mean of precision and recall.
The F1-score (Gupta, Anjum, Gupta, & Katarya, 2021), calculated as shown in Eq. (4), represents the
harmonic mean of precision and recall, offering a balanced evaluation of the model's performance. This
metric is especially valuable when dealing with imbalanced datasets, as it combines both precision and
recall into a single value that accounts for the trade-off between these two metrics. A high F1-score,
derived from this formula, indicates that the model performs well in identifying positive cases without
compromising reliability or sensitivity.
Precision X Recall

F1—Score = 2 X ———— (4)

Precision + Recall

4. Results and Discussion

This section delves into the findings derived from the research and their comprehensive evaluation.
The analysis and interpretation of these results are crucial for understanding the effectiveness and
robustness of the methodologies employed. By examining the outcomes in detail, we can assess the
performance of the proposed approaches, identify potential areas for improvement, and draw meaningful
conclusions about the practical implications of the study. The results are presented in a structured manner,
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Fig. 14. With a learning rate of 0.005, the Convolutional Neural Network achieved an accuracrzydfrég.SS%.

beginning with the dataset collection and followed by image preprocessing, model training, and
performance evaluation. Each subsection provides a thorough examination of the respective steps,
supported by relevant figures and tables, and quantitative metrics, to offer a clear and coherent narrative of
the research findings.
4.1. Preprocessing Results

The preprocessing phase is essential for preparing mammography images for subsequent feature
extraction and classification. Each step is designed to enhance the diagnostic quality of the images by
removing extraneous artifacts, improving contrast, and highlighting diagnostically relevant structures. The
results of these procedures are sequentially presented in Figs. 7-13, with each figure illustrating the
transformation applied at a specific stage of the preprocessing pipeline.

The procedure begins with image resizing (Fig. 7) to standardize all images to a uniform resolution of
512 x 512 pixels. This is followed by image cropping (Fig. 8) to remove extraneous artifacts such as
watermarks and retain only the breast tissue region. Next, the images are converted from RGB to grayscale
(Fig. 9), ensuring consistency by eliminating unnecessary color variations. The Laplacian of Gaussian (LoG)
filter (Fig. 10) is then applied to enhance important edges and highlight microcalcifications. This is followed
by the Gabor filter (Fig. 11), which extracts orientation-based texture features relevant to detecting
abnormalities. Global threshold segmentation (Fig. 12) is subsequently used to reduce noise further and
delineate regions of interest, while the image sharpening step (Fig. 13) enhances the clarity of fine structural
details. This comprehensive preprocessing pipeline demonstrates how each step progressively improves
image quality, ensuring that the final dataset input into the CNN is standardized, reliable, and diagnostically
meaningful.
4.2. Training and Validation Results

This study utilized a dataset comprising 8,914 mammography images, which were preprocessed and
classified into three diagnostic categories: Benign, Cancer, and Normal. The dataset was split into two
subsets to facilitate effective and representative model training, with 90% (8,027 images) allocated for
training and 10% (887 images) reserved for testing. This partitioning ensures sufficient data for training
while maintaining an independent set for unbiased performance evaluation. Detailed distribution of images
per category is presented in Table 1.

The Convolutional Neural Network (CNN) was trained using diverse parameter configurations, with
a primary emphasis on the learning rate, batch size, and number of epochs. Table 2 delineates the validation
accuracy and training duration attained under these conditions. The findings suggest that models trained
with a comparatively elevated learning rate (0.05) exhibited inconsistent performance, yielding validation
accuracies between 33% and 37%. In contrast, reduced learning rates (0.01, 0.005, and 0.001)
consistently produced markedly higher validation accuracy, achieving up to 99-100% in specific
configurations. This discovery underscores the significance of selecting a reduced learning rate to facilitate
more successful convergence of the network.
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Fig. 15. Confusion matrix for CNN classification on the test dataset (Learning Rate = 0.005).

Table 4
Convolutional Neural Network (CNN) classification results and evaluation.
Acc. Prec. Prec. Prec. Rec. Rec. Rec. Mic. Mic. Mic.
LR Epoch BS VF  Time (min:s) Val. Benign Cancer Normal Benign Cancer Normal Prec. Rec. F1
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
0.005 100 50 50 102:44 99.55 99,50 100 99.80 99.83 100 99.41 99.78 99.78  99.78

Notes: Accuracy (Acc.), Precision (Prec.), Recall (Rec.), Micro-Averaged Precision (Mic. Prec.), Micro-Averaged Recall (Mic. Rec.),
and Micro-Averaged F1-score (Mic. F1).

The number of epochs was evaluated at both 10 and 20. The findings indicate that prolonging training
to 20 epochs did not uniformly enhance accuracy, implying that the model had already attained
convergence prior to the maximum iteration count. This suggests that extending epochs beyond a specific
limit may not enhance performance, but instead prolongs processing time.

The batch size significantly influenced efficiency and performance. Larger batch sizes, such as 50,
generally decreased training time per epoch, but did not consistently produce higher accuracy compared
to smaller batch sizes, such as 10. This finding suggests that smaller batch sizes may facilitate more precise
parameter updates during training, although this comes with increased computational costs.

Fig. 14 depicts the training process and validation curves, demonstrating a swift improvement in
accuracy during the initial iterations, which subsequently stabilized near 100% after roughly 2,000 iterations.
Simultaneously, the loss value diminished and settled around zero, further validating the efficacy of the
selected hyperparameters.

The findings collectively demonstrate that the optimal configuration for this model was achieved with
a learning rate of 0.005, a batch size of 50, and 10-20 epochs, resulting in the most advantageous
equilibrium between accuracy (99.55%) and computational efficiency. These findings underscore the
critical significance of hyperparameter optimization in improving CNN efficacy for mammography image
classification. The adjusted hyperparameters were later utilized in the final evaluation with the independent
testing set, and the results are displayed in Fig. 15 and Table 4.

4.3. CNN Architecture and Performance Evaluation

The Convolutional Neural Network (CNN) used in this study was designed as a lightweight
architecture consisting of three convolutional blocks followed by a classifier head. The input to the model is
a grayscale mammography image resized to 512 x 450 x 1, ensuring uniformity across the dataset. Each
convolutional block applies a 3 x 3 kernel with same padding, followed by Batch Normalization and ReLU
activation to stabilize training and introduce non-linearity. In the first two blocks, 2 X 2 max-pooling is applied
to reduce the spatial dimensions while preserving essential features progressively.

The final stage of the network consists of a fully connected dense layer with a softmax activation
function, producing three probability outputs corresponding to the target classes: Normal, Benign, and
Cancer. The overall workflow of the CNN training process is summarized in Fig. 14, which illustrates the
sequence from data input and preprocessing to training and classification. The detailed layer-by-layer
configuration of the proposed CNN model is presented in Table 2, including kernel sizes, strides, and output
dimensions.

Moreover, the architecture was deliberately crafted to attain an equilibrium between computing
efficiency and diagnostic precision. The model has a shallow architecture of three convolutional blocks,
hence reducing the likelihood of overfitting while ensuring computational efficiency for extensive
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mammaography datasets. The incorporation of Batch Normalization and RelLU activation within each block
improves stability and expedites convergence, while the softmax output layer offers interpretable probability
distributions for clinical decision assistance. This approach guarantees that the CNN effectively captures
essential texture and edge-related data while providing robust and dependable classification across the
three diagnostic categories.

Fig. 14 illustrates that the training process of the CNN model exhibits a rapid increase in accuracy
during the initial iterations, reaching stable convergence after approximately 2,000 iterations. The validation
accuracy achieved 99.55%, while the loss value steadily decreased and stabilized near zero, indicating that
the model successfully minimized classification errors without signs of overfitting. The close alignment
between training and validation curves further confirms the robustness of the selected parameters,
particularly the learning rate (LR) of 0.005, which facilitated both high accuracy and effective convergence.
These findings affirm that the proposed CNN architecture is capable of distinguishing between normal,
benign, and malignant mammography images with high reliability, thereby validating the preprocessing
pipeline and model configuration.

Following the strong training performance shown in Fig. 14, the model was then evaluated on the
unseen testing dataset to assess its generalization ability. The evaluation results, summarized in the
confusion matrix presented in Fig. 15, demonstrate that the CNN achieved highly accurate classification
across all three categories. Specifically, the model correctly identified 599 Benign, 672 Cancer, and 507
Normal instances, with only four misclassifications in total (three benign images predicted as normal and
one normal image predicted as benign). This corresponds to a test micro-accuracy of 99.78%, with per-
class F1-scores of 99.67% (Benign), 100.00% (Cancer), and 99.61% (Normal). The overall macro-F1 score
reached 99.76%, while the weighted-F1 score was 99.78%. These results underscore the effectiveness of
the proposed CNN model in accurately classifying mammography images and highlight its robustness for
practical application in early breast cancer detection.

Fig. 15 displays the confusion matrix for the CNN classification applied to the testing dataset, utilizing
a learning rate of 0.005. The algorithm attained exceptional predictive accuracy, properly classifying 599
Benign, 672 Cancer, and 507 Normal pictures, with merely four occurrences misclassified (three benign
cases identified as normal and one normal case identified as benign). The results demonstrate the model's
robust ability to differentiate among the three diagnostic categories with negligible error. Table 4 presents a
comprehensive assessment of performance indicators, encompassing accuracy, precision, recall, and F1-
score for each category, based on these results. The model achieved a validation accuracy of 99.55%, with
per-class precision and recall metrics regularly exceeding 99%, and an overall F1-score of 0.9975. The
uniformity across several evaluation parameters validates both the resilience of the proposed CNN
architecture and the efficacy of the preprocessing pipeline in generating dependable and diagnostically
significant classifications.

Table 4 illustrates the exceptional reliability and robustness of the proposed CNN model in the
classification of mammography pictures. The model exhibits exceptional generalization to unknown data,
evidenced by a validation accuracy surpassing 99% and consistently high precision, recall, and F1-scores
across all classes. The results validate that the preprocessing pipeling, in conjunction with the lightweight
CNN architecture, establishes a very efficient framework for the early identification of breast cancer. This
evaluation is followed by an explanation that elaborates on the architectural implementation of the CNN
model and its contribution to accomplishing these goals.

4.4. Performance Evaluation

The ultimate efficacy of the suggested CNN model was evaluated utilizing the independent testing
set. Fig. 15 illustrates that the confusion matrix indicates the model attained exceptional classification
accuracy across all three categories, with merely four misclassified samples out of 887. Table 4 elaborates
on the evaluation measures, indicating a micro-accuracy of 99.78%, an average precision of 99.74%, an
average recall of 99.77%, and a comprehensive F1-score of 99.75%. Per-class F1-scores were consistently
elevated, attaining 99.67% for Benign, 100.00% for Cancer, and 99.61% for Normal. These findings validate
the resilience of the proposed CNN architecture and the efficacy of the preprocessing pipeline in
guaranteeing accurate categorization of mammography pictures.

This model's primary strength is its lightweight construction, enabling excellent precision alongside
computing efficiency. The implementation of three convolutional blocks, accompanied by batch
normalization and max pooling, facilitated the extraction of distinctive features while preventing overfitting,
and the preprocessing processes markedly improved image quality. Notwithstanding these advantages, the
model possesses specific constraints. The study was initially performed on the Mini-DDSM dataset, which,
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despite its widespread utilization, may not adequately represent the heterogeneity of real-world
mammaography pictures across diverse populations and imaging modalities. Secondly, although the model
attained near-perfect accuracy on the testing set, its generalizability to larger, more heterogeneous datasets
requires validation.

The suggested approach exhibits competitive, and in certain instances superior, performance relative
to prior work on mammography picture classification. Earlier studies utilizing conventional CNN
architectures on the DDSM dataset indicated accuracies of 93% and 97%, whereas investigations applying
more sophisticated deep learning models, such as ResNet or DenseNet, generally attained accuracies of
97% to 99%. This study's lightweight CNN achieved an accuracy of 99.78%, demonstrating that well-
structured shallow architectures, when paired with efficient preprocessing, may compete with or exceed
the performance of deeper, more resource-intensive models. These findings emphasize that the proposed
CNN not only attains state-of-the-art performance but also provides a computationally efficient framework
suitable for implementation in clinical assistance systems for early breast cancer identification.

4.5. Discussion

This study's results indicate that the suggested lightweight CNN architecture, in conjunction with a
thorough preprocessing pipeline, can achieve near-perfect performance in categorizing mammography
pictures into Normal, Benign, and Cancer categories. The model achieves an accuracy of 99.78% and
consistently demonstrates elevated precision, recall, and F1-scores, confirming that critical diagnostic
features, including microcalcifications and tissue patterns, are successfully recorded and assimilated. These
findings underscore the significance of meticulously crafted preprocessing stages, which enhanced image
quality and improved the CNN's capacity to extract discriminative features, despite its relatively superficial
architecture.

The elevated classification performance suggests considerable promise for aiding radiologists in the
early identification of breast cancer. By automating the classification of mammography images, the model
can alleviate diagnostic workload, diminish human error, and furnish a dependable second opinion to
enhance clinical decision-making. Timely and precise differentiation between benign and malignant
abnormalities is essential for establishing suitable patient management strategies, hence enhancing survival
rates and treatment results. Consequently, the proposed methodology emphasizes the role of deep learning
as an auxiliary tool in contemporary medical imaging techniques.

Notwithstanding the encouraging outcomes, there remains room for improvement to advance further.
The model was trained and evaluated using the Mini-DDSM dataset, which, despite being well-established,
may not comprehensively reflect the diversity of clinical mammography data found in real-world scenarios.
Subsequent research should encompass assessments on bigger and more diverse datasets to confirm
generalizability. Moreover, incorporating sophisticated augmentation techniques, attention mechanisms, or
transfer learning methodologies could significantly improve robustness and adaptability. Extending the
paradigm to incorporate multi-modal imaging data, such as the integration of mammography with ultrasound
or MRI, gives a promising opportunity to enhance diagnostic efficacy.

In conclusion, the discourse highlights that although the proposed CNN exhibits exceptional
performance and significant utility in facilitating breast cancer screening, its overall influence will rely on
ongoing enhancement, validation with real-world clinical data, and incorporation into current healthcare
systems.

5. Conclusions

This study introduced a streamlined Convolutional Neural Network (CNN) model integrated with an
extensive preprocessing pipeline for the categorization of mammography images. The preprocessing
stages, comprising resizing, cropping, grayscale conversion, Laplacian of Gaussian (LoG) filtering, Gabor
filtering, global threshold segmentation, and image sharpening, were effective in improving image quality
and highlighting diagnostically pertinent features before model training.

The suggested CNN attained consistently superior performance, with a validation accuracy of
99.55% and a test accuracy of 99.78%. The findings were additionally corroborated by F1-scores
surpassing 0.99 in all diagnostic categories (Normal, Benign, and Cancer). The results validate that the
model can consistently identify essential characteristics, including microcalcifications and tissue
architectures, hence guaranteeing strong classification efficacy. This result was achieved with a relatively
shallow CNN comprising only three convolutional blocks, illustrating that a lightweight architecture, when
combined with efficient preprocessing, can yield accuracy equivalent to or exceeding that of more intricate
deep learning models.
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The proposed technique highlights the capability of CNN-based systems to assist radiologists in the
early diagnosis of breast cancer from a clinical standpoint. This approach enhances classification accuracy
and minimizes diagnostic errors, so facilitating more dependable screening, prompt intervention, and
ultimately better patient outcomes.

In contrast to previous studies that generally indicated accuracies between 93-97% for standard
CNNs and 97-99% for more complex designs like ResNet and DenseNet, the current research
demonstrated enhanced performance. This illustrates that computationally efficient models can achieve
state-of-the-art outcomes, rendering them more appropriate for practical clinical applications where
resources and time are frequently limited.

Subsequent research must confirm the generalizability of this methodology by implementing it on
larger and more varied datasets that encompass various imaging circumstances and demographics. Further
enhancements, including the integration of sophisticated augmentation strategies, transfer learning, or
attention mechanisms, along with the expansion of the framework to multi-modal imaging—such as the
combination of mammography with ultrasound or MRI—could enhance the robustness and clinical
applicability of the system.
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