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Abstract 
Volcanic eruption disasters occur frequently in Indonesia due to the high density of active volcanoes, 

posing persistent risks to surrounding communities and infrastructure. Effective mitigation of these 

hazards is challenged by limitations in monitoring systems, particularly related to instrumentation 

coverage and the availability of expert human resources. One critical aspect of volcanic monitoring is the 

accurate classification of seismic activity, which reflects subsurface volcanic processes and supports 

timely hazard assessment. This study addresses the challenge of reliably classifying volcanic seismic 

events by proposing an integrated framework that combines autocorrelation-based signal 

characterization with Support Vector Machine (SVM)–based multi-class classification, supported by Z-

score normalization during data preprocessing. The framework is designed to enhance feature 

consistency and robustness against noise commonly present in volcanic seismic signals. To evaluate its 

effectiveness, three SVM kernel functions—linear, polynomial, and radial basis function (RBF)—are 

systematically assessed under identical experimental conditions. The results demonstrate that the 

polynomial SVM kernel with a degree of two provides the most reliable classification performance, 

achieving an accuracy of 0.9605. In addition, the application of Z-score normalization substantially 

improves model stability and overall performance across all kernel configurations, indicating that feature 

scaling plays a critical role in SVM-based seismic classification. Performance variations among kernels 

suggest that non-linear feature representations are better suited to capture the complex characteristics 

of volcanic seismic signals, while classification errors are primarily influenced by class imbalance in 

underrepresented event types. These findings indicate that the proposed framework effectively supports 

automated volcanic seismic signal analysis and has the potential to enhance the reliability of seismic-

based volcanic activity monitoring. 

Keywords: autocorrelation, seismic signal classification, support vector machine, volcano. 

1. Introduction 
Volcanic eruptions are natural hazards that frequently occur in Indonesia due to the large number of 

active volcanoes distributed across the region. These events pose significant risks to surrounding 

communities and infrastructure, making continuous monitoring and early identification of volcanic activity 

essential (Tempola, Muhammad, & Khairan, 2018; Marzocchi, Selva, & Jordan, 2021). Limitations in 

monitoring systems, particularly in terms of instrumentation availability and human resources, further 

increase the risk of delayed hazard assessment and mitigation (Ririh, Laili, Wicaksono, & Tsurayya, 2020; 

Thelen, Matoza, & Hotovec-Ellis, 2022). Seismic signals represent one of the most important parameters in 

volcano monitoring, as they reflect subsurface processes such as magma movement, rock fracturing, and 

material collapse. Different types of volcanic seismic events exhibit distinct temporal and spectral 

characteristics; however, waveform similarity, low signal-to-noise ratio (SNR), and complex environmental 

noise often complicate manual identification (McNutt, 2025; Chouet & Matoza, 2013). These challenges 

motivate the adoption of automated approaches for seismic signal analysis.  
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Recent advances in artificial intelligence, particularly machine learning (ML), have enabled the 

development of data-driven methods capable of learning complex patterns from high-dimensional data 

(Alzubi, Nayyar, & Kumar, 2018; Bergen, Johnson, Hoop, & Beroza, 2019; Mousavi, Ellsworth, Zhu, 

Chuang, & Beroza, 2020). ML techniques have been widely applied to volcanic seismic event classification 

and have demonstrated promising performance in improving accuracy and efficiency (Anggian, Hidayat, & 

Furqon, 2020; Tempola, Muhammad, & Khairan, 2018; Ross, Meier, Hauksson, & Heaton, 2018). Among 

various ML algorithms, Support Vector Machine (SVM) has shown strong performance in handling non-

linear data distributions and constructing optimal decision boundaries in high-dimensional feature spaces 

(Handayanto, Latifa, Saputro, & Waliyansyah, 2019; Rahutomo, Saputra, & Fidyawan, 2018). In the context 

of seismology, SVM has been successfully applied to classify seismic events and distinguish different types 

of volcanic signals, particularly when training data are limited (Tang, Zhang, & Wen, 2020; Manley, et al., 

2022). Furthermore, recent studies have shown that machine learning approaches remain effective under 

noisy conditions when combined with appropriate preprocessing and feature extraction strategies (Meier, 

et al., 2019). 

Data preprocessing plays a crucial role in improving classification performance. Autocorrelation 

remains a reliable technique for seismic event detection due to its ability to emphasize coherent and 

repetitive signal patterns (Perdana, Fatichah, & Purwitasari, 2015; Titos, Bueno, García, Benítez, & Ibañez, 

2019; Gibbons & Ringdal, 2006). In addition, data normalization techniques such as Z-score normalization 

are widely adopted to reduce feature scale disparities, improve model convergence, and enhance 

classification robustness (Ambarwari, Adrian, & Herdiyeni, 2020; Karo & Hendriyana, 2022; Singh & Singh, 

2020). Based on these considerations, this study proposes a volcanic seismic activity classification 

framework that integrates autocorrelation-based event detection, Z-score normalization for data 

preprocessing, and SVM for multi-class classification. The proposed approach aims to improve classification 

accuracy and robustness against noise, thereby supporting more reliable volcanic activity monitoring.   
 

2. Literature Review 
2.1. Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a supervised learning algorithm originally developed by Vapnik and 

colleagues, grounded in the principle of Structural Risk Minimization (SRM). This principle aims to enhance 

generalization performance by balancing empirical error and model complexity. The fundamental objective 

of SVM is to construct an optimal separating hyperplane that maximizes the margin between classes within 

the feature space (Cortes & Vapnik, 1995; Vapnik, 1998; Handayanto, Latifa, Saputro, & Waliyansyah, 

2019). SVM supports both linear and non-linear classification. For linearly separable data, a linear 

hyperplane is sufficient, whereas non-linearly separable data are handled through kernel-based 

transformations. Kernel functions implicitly map the original input space into a higher-dimensional feature 

space, enabling linear separation in the transformed domain. Commonly used kernels include linear, 

polynomial, and radial basis function (RBF) kernels (Bishop, 2006; Schölkopf & Smola, 2001).  

a) Architecture and Workflow  

From an architectural standpoint, Support Vector Machine (SVM) consists of an input feature space, 

a set of support vectors, an optimal hyperplane, and a margin that separates classes. Support vectors 

correspond to training samples located closest to the decision boundary and play a decisive role in 

determining the hyperplane position. The margin, defined as the distance between the hyperplane and 

the nearest support vectors, is maximized to improve classification robustness and generalization 

capability (Vapnik, 1998; Cortes & Vapnik, 1995). The SVM workflow begins with feature vector input, 

followed by kernel-based mapping when required to handle non-linearly separable data. The optimal 

hyperplane is then obtained by solving a constrained optimization problem that balances margin 

maximization and classification error. Classification of unseen data is performed by evaluating the sign 

of the resulting decision function (Bishop, 2006; Schölkopf & Smola, 2001). The overall architecture 

and workflow of the SVM classifier are illustrated in Fig. 1.   

b) Mathematical Formulation  

For linear SVM, the decision function is expressed in Eq. 1:  
 

𝑓(𝑥) = 𝑤 ∙ 𝑥 + 𝑏                          (1) 
 

where 𝑤 represents the weight vector and 𝑏 denotes the bias term. This formulation aims to determine 

an optimal separating hyperplane that maximizes the margin between classes in the feature space 

(Cortes & Vapnik, 1995; Vapnik, 1998).  



 

 

 

 

Classification of Volcanic …                                         Journal of Information Technology and Cyber Security 4(1) January 2026: 26-40 

 
 

 

 
 

 

 

 

 

 
Fig. 1. Architecture and workflow of the Support Vector Machine. 

 

For non-linear SVM, the decision function is defined in Eq. 2:  
 

𝑓(𝑥) = ∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥)
𝑁
𝑖=1 + 𝑏                         (2) 

 

where 𝛼𝑖 are the Lagrange multipliers, 𝑦𝑖  are the class labels, 𝑥𝑖 denote the support vectors, and 𝐾(∙) 
represents the kernel function that implicitly maps the input data into a higher-dimensional feature 

space (Schölkopf & Smola, 2001).  

In this study, three kernel functions: linear, polynomial, and radial basis function (RBF)—are employed 

to evaluate different levels of feature space complexity in volcanic seismic signal classification. The 

linear kernel is defined in Eq. 3:  
 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖 ∙ 𝑥𝑗                          (3) 
 

The linear kernel assumes linear separability in the original feature space and serves as a baseline 

model for assessing the discriminative capability of the extracted seismic features (Bishop, 2006). The 

polynomial kernel is expressed in Eq. 4:  
 

𝐾(𝑥𝑖 , 𝑥𝑗) = (𝛾𝑥𝑖 ∙ 𝑥𝑗 + 𝑟)𝑑                  (4) 
 

where 𝛾 is a scaling parameter, 𝑟 is a constant term, and 𝑑 denotes the polynomial degree. The 

polynomial kernel enables the modeling of non-linear feature interactions, which are commonly 

observed in seismic signals due to complex subsurface volcanic processes (Schölkopf & Smola, 2001; 

Bishop, 2006). The RBF kernel is defined in Eq. 5:   
 

𝐾(𝑥𝑖 , 𝑥𝑗) = exp⁡(−𝛾 ∥ 𝑥𝑖 − 𝑥𝑗 ∥
2)                  (5) 

 

The RBF kernel is frequently adopted due to its flexibility in modeling complex non-linear relationships and 

its effectiveness in handling noisy and high-dimensional data (Bishop, 2006; Tang, Zhang, & Wen, 2020). 

This property makes the RBF kernel particularly suitable for seismic signal classification, where overlapping 

waveform characteristics and environmental noise are commonly encountered (Malfante, et al., 2018). 

The evaluation of these three kernel functions allows a systematic assessment of model robustness 

and generalizability across different feature space representations, which is essential for multi-class 

volcanic seismic signal classification. 

2.2. Autocorrelation 

Autocorrelation is a signal processing technique that quantifies the similarity between a signal and a 

time-shifted version of itself. By evaluating the degree of self-similarity across different time lags, 

autocorrelation reveals repeating patterns, periodic structures, and coherent energy that may not be clearly 

observable in the time domain. In seismic analysis, autocorrelation has been widely adopted for event 

detection and signal characterization, particularly in environments dominated by noise and low signal-to-

noise ratios (Gibbons & Ringdal, 2006).  

a) Mathematical Formulation  

For a discrete seismic signal 𝑥[𝑛] of length 𝑁, the autocorrelation function 𝑅𝑥𝑥(𝑘) is defined in Eq. 6:   
 

𝑅𝑥𝑥(𝑘) = ∑ 𝑥[𝑛]𝑥[𝑛 + 𝑘]𝑁−𝑘−1
𝑛=0                   (6) 

 

where 𝑘 denotes the time lag and 𝑥[𝑛 + 𝑘] represents the signal shifted by 𝑘 samples. This formulation 

measures the similarity between the original signal and its delayed version.  

To facilitate comparison across signals with different amplitudes, a normalized autocorrelation function 

is commonly employed as defined Eq. 7: 
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𝜌𝑥𝑥(𝑘) =
R𝑥𝑥(𝑘)

𝑅𝑥𝑥(0)
                     (7) 

where 𝑅𝑥𝑥(0) corresponds to the signal energy at zero lag. Normalization constrains the 

autocorrelation values to the interval [-1,1], enabling consistent interpretation of correlation strength.  

b) Interpretation and Application in Seismic Analysis  

In seismic applications, significant peaks in the autocorrelation function indicate the presence of 

coherent or repeating waveform structures. Such behavior is often associated with repeating 

earthquakes, volcanic tremor, or resonance processes within volcanic systems. In contrast, incoherent 

background noise typically produces low and irregular autocorrelation values across time lags. 

Previous studies have demonstrated that autocorrelation-based methods are effective in enhancing 

the detection of low-magnitude seismic events that may be missed by conventional amplitude-based 

techniques (Gibbons & Ringdal, 2006). Furthermore, autocorrelation has been successfully integrated 

with feature extraction and pattern recognition approaches to improve the interpretability and 

robustness of seismic signal analysis (Perdana, Fatichah, & Purwitasari, 2015).  

c) Application Context in This Study  

In this study, autocorrelation is utilized as a signal characterization approach to emphasize intrinsic 

temporal structures within seismic waveforms. By highlighting coherent energy patterns prior to 

classification, autocorrelation contributes to improved feature discrimination and supports subsequent 

machine learning–based analysis. 

2.3. Related Work 

Numerous studies have explored the use of machine learning techniques for seismic signal 

classification in both tectonic and volcanic contexts. Tang, Zhang, & Wen (2020) applied Support Vector 

Machine (SVM) to classify seismic events in the Tianshan orogenic belt using spectral features derived from 

P-wave and S-wave characteristics, achieving high classification accuracy. Their findings highlight the 

effectiveness of SVM in handling complex seismic datasets. Lara-Cueva, Benítez, Paillacho, Villalva, & Rojo-

Álvarez (2018) investigated multi-class SVM for classifying volcanic seismic signals recorded at Cotopaxi 

volcano, with a focus on long-period (LP) and volcano-tectonic (VT) events. By integrating an initial 

detection stage with SVM-based classification, their study demonstrated promising performance while also 

revealing challenges related to waveform similarity across event types.  

Beyond SVM-based approaches, Malfante, et al. (2018) conducted a comprehensive study on 

machine learning applications for volcanic seismic signals and emphasized that model performance is 

strongly influenced by preprocessing strategies and feature representation. Their work underscores the 

importance of addressing noise complexity and non-stationary signal characteristics. Autocorrelation-based 

detection methods have also been widely reported in seismic research. Gibbons & Ringdal (2006) 

demonstrated that autocorrelation significantly improves the detection of low-magnitude seismic events that 

are difficult to identify using conventional techniques. Similar approaches have been adopted in various 

seismic monitoring studies to enhance detection sensitivity under low signal-to-noise ratio conditions.  

Despite these advances, most previous studies focus primarily on direct classification of seismic 

signals without explicitly integrating time-series based event detection and systematic data normalization. 

In addition, the impact of feature normalization, particularly Z-score normalization, on SVM performance in 

multi-class volcanic seismic classification remains insufficiently explored. These limitations motivate the 

development of an integrated framework that combines autocorrelation-based event detection, data 

normalization, and comprehensive kernel evaluation to improve the robustness and reliability of volcanic 

seismic signal classification. 

3. Methods 
In general, this study consists of three main stages: data preprocessing, data modeling, and model 

evaluation. An overview of the research stages is presented in Fig. 2. Fig. 2 illustrates the overall research 

workflow adopted in this study, beginning with problem identification to define the scope and objectives of 

the investigation. This initial stage focuses on recognizing key challenges in volcanic seismic data analysis 

and formulating research questions to be addressed, ensuring that subsequent methodological steps 

remain aligned with the study aims. Following this stage, data collection is conducted by acquiring volcanic 

seismic signal recordings relevant to the case study. These recordings constitute the primary dataset and 

represent various types of volcanic seismic activity, providing a solid foundation for further processing and 

analysis. The workflow then proceeds to data preprocessing, which is essential for ensuring data quality 

and suitability for modeling. During this phase, raw seismic signals are subjected to event detection and 

normalization procedures to reduce noise effects, standardize feature scales, and preserve important signal  
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Fig. 2. Research workflow. 

 

characteristics required for reliable analysis. After preprocessing, data modeling is performed as a single, 

clearly defined stage. In this phase, machine learning techniques are applied to develop a classification 

model capable of learning discriminative patterns from the processed seismic data and distinguishing 

among different seismic event classes. Finally, the developed model is evaluated to assess overall 

performance and reliability of the results. Although the workflow stages are presented using general labels, 

each stage reflects specific processes described in the Methods section, including autocorrelation-based 

event detection, data normalization, and machine learning–based classification using Support Vector 

Machine. 

3.1. Dataset Collection 

The data used in this study consist of volcanic seismic signal recordings collected from monitoring 

stations surrounding Mount Merapi, Indonesia, during the period 2019 - 2021. The seismic signals were 

recorded within a frequency range of 0.5 - 50 Hz, which is appropriate for capturing a wide range of volcanic 

seismic activities. The dataset comprises 5,000 seismic signal samples, which were labeled by seismic 

analysts according to established volcanic seismic classifications.  

The seismic signals were categorized into eight classes: AP (we use a localized term Awan Panas), 

associated with pyroclastic density currents or hot cloud events; DG (Deep Volcanic Earthquake), 

representing seismic activity originating from deeper volcanic structures related to magma movement; Low 

Frequency events, characterized by dominant low-frequency components and commonly linked to fluid or 

gas movement within the volcanic system; Tremor, referring to continuous or semi-continuous seismic 

vibrations typically associated with sustained magma or gas flow; Multiple-phase events, which contain 

more than one identifiable seismic phase within a single signal; Rockfall events, generated by surface 

material collapse or gravitational mass movement; VT-A, representing shallow volcano-tectonic 

earthquakes caused by brittle rock failure; and VT-B, corresponding to deeper volcano-tectonic 

earthquakes associated with stress changes within the volcanic structure.  

For the classification process, the Support Vector Machine (SVM) model is trained using feature 

representations extracted from seismic signals after event detection and normalization. These features 

capture essential temporal and frequency-related characteristics of the waveforms, enabling effective  

discrimination among different seismic event classes. Autocorrelation is applied directly to the raw seismic 

signals prior to normalization to preserve their intrinsic temporal structure, while time–frequency analysis is 

used to retain both temporal patterns and spectral content. Details of the preprocessing and feature 

extraction procedures are provided in the Methods section.  
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Table 1  

Example of the dataset. 

No X1 X2 X3 Y 

1 3.734 1.437 6.262 1 

2 8.820 −1.354 1.196 3 

3 −4.266 1.122 −1.818 4 

4 2.205 −9.590 8.223 3 

5 1.296 −1.614 5.618 7 

 

Table 2  

Example of Z-score normalized data. 

No X1 X2 X3 Y 

1 −0.224 −0.190 −0.166 1 

2 1.001 −0.299 −0.262 3 

3 −0.199 1.122 −0.170 4 

4 0.114 −0.179 0.901 3 

5 −0.302 0.561 −0.236 7 

  

To evaluate the proposed classification model, the dataset is divided into training and testing subsets 

using a 90:10 ratio, ensuring sufficient data for model learning while retaining an independent test set for 

objective performance assessment in a multi-class setting. The training set consists of labelled seismic 

signals used for model learning, whereas the testing set contains unseen samples for evaluating model 

generalization. An example of the dataset structure is presented in Table 1.  

The training dataset comprises 5,000 seismic signal samples and is arranged to maintain a relatively 

balanced distribution across the eight seismic event classes, thereby reducing potential class bias and 

supporting fair performance evaluation. Prior to classification, seismic event detection is performed using 

autocorrelation-based analysis with a normalized threshold of 0.5, which effectively distinguishes coherent 

seismic events from background noise.  

During model optimization, kernel-specific parameter ranges are selected according to the 

characteristics of each SVM kernel. For the polynomial kernel, higher values of the regularization parameter 

C are evaluated to avoid underfitting after Z-score normalization and to capture non-linear feature 

relationships. In contrast, the RBF kernel is tested starting from moderate C values, as very small values 

tend to over-smooth the decision boundary and reduce class separability. These parameter selections follow 

established SVM tuning practices and enable a fair and meaningful performance comparison.  

The dataset consists of feature vectors 𝑋𝑛 that represent seismic signal attributes extracted from 

waveform data, including amplitude, frequency, and temporal characteristics. These features are used as 

input variables for the machine learning model. The target variable 𝑌 denotes the seismic event class, where 

0 corresponds to AP, 1 to DG, 2 to Low Frequency events, 3 to Tremor, 4 to Multiple-phase events, 5 to 

Rockfall, 6 to VT-A, and 7 to VT-B. 

The seismic signals are modeled using feature vectors that encode key waveform characteristics. 

Feature 𝑋1 represents amplitude-based attributes associated with signal energy, 𝑋2 describes frequency-

related properties derived from spectral analysis, and 𝑋3 captures temporal or morphological characteristics 

of the waveform. These features collectively form a compact representation of seismic signal attributes that 

facilitates the classification of seismic event types, as indicated by the output variable 𝑌.  

3.2. Data Preprocessing 

Data preprocessing is a crucial step in optimizing the SVM model to improve classification accuracy. 

The seismic signals used in this study contain a significant number of low-frequency components; therefore, 

signal features and events must be analyzed prior to modelling. The preprocessing steps applied in this 

study are described as follows.  

a) Autocorrelation  

In this stage, seismic signals are processed for event detection by transforming the raw waveforms 

into autocorrelation representations using the np.correlate() function from the Python NumPy library. 

Event detection is performed by comparing the maximum amplitude of the autocorrelation output with 

a predefined threshold value of 0.5. Signals whose autocorrelation amplitudes exceed this threshold 

are classified as containing seismic events. The detected signals are subsequently converted into 

spectrogram representations and then assigned corresponding labels for further analysis.  

b) Data Normalization  



 

 

 

 

Classification of Volcanic …                                         Journal of Information Technology and Cyber Security 4(1) January 2026: 26-40 

 
 

 

 
 

 

 

 

 

 
(a) 
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Fig. 3. (a) Before and (b) after data modeling results. 

 

Before model training, data normalization is performed using the Z-score method. Zero-mean 

normalization is applied by using the mean and standard deviation of the data, resulting in standardized 

features with a mean value of 0 and a standard deviation of 1 (Han, Kamber, & Pei, 2012; Singh & 

Singh, 2020). Z-score normalization is employed to reduce the effect of unbalanced value ranges 

across features. An example of Z-score normalized data is shown in Table 2. 

3.3. Data Modelling 

After completing the data preprocessing stage, a Support Vector Machine (SVM) model is 

constructed to classify seismic signals into multiple classes. The preprocessed seismic features serve as 

the input data before modeling, where feature consistency is ensured through autocorrelation-based 

characterization and Z-score normalization. During the modeling process, the SVM maps the input features 

into an appropriate feature space and learns decision boundaries to achieve class separation.  

Three kernel functions: linear, polynomial, and radial basis function (RBF) are evaluated to assess their 

capability in modeling the data. For the linear kernel, different values of the regularization parameter C are tested 

to balance margin maximization and classification error. The polynomial kernel is examined by varying both the 

polynomial degree and C to capture non-linear patterns, while the RBF kernel is analyzed using different 

combinations of C and γ to model complex decision boundaries. The resulting feature space reflects the data 

representation after modeling, where class separation is achieved based on the learned decision functions. 

The transformation of data representations before and after modeling is illustrated in Fig. 3. Prior to 

modeling, the seismic signals are transformed into representative features through autocorrelation-based 

characterization and normalized using the Z-score method. After modeling, the Support Vector Machine 

(SVM) maps the input features into a discriminative feature space and learns decision boundaries to 

separate different types of volcanic seismic events. This illustration highlights the transformation of volcanic 

seismic data during the modeling process. 

3.4. Model Evaluation 

Model evaluation in this study is conducted using a confusion matrix to assess the performance of 

the classification model. The confusion matrix compares predicted class labels with the true class labels, 

providing information on both correctly classified and misclassified samples for each class. This 

representation allows the evaluation of overall classification accuracy while also highlighting the distribution 

of classification errors across different seismic event categories. Furthermore, the confusion matrix enables 

the calculation of class-specific performance metrics, including precision, recall, and F1-score, which are 

particularly important for multi-class seismic signal classification with potential class imbalance. 

 Precision is defined as the proportion of correctly predicted positive samples among all predicted 

positive samples and is calculated as in Eq. 8: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃⁡+⁡𝐹𝑃
               (8) 

 

Recall, as defined in Eq. 9, represents the proportion of correctly predicted positive samples among 

all actual positive samples: 

 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃⁡+⁡𝐹𝑁
                              (9) 

 

The F1-score, as formulated in Eq. 10, provides a balanced measure between precision and recall 

and is computed as the harmonic mean of these two metrics: 
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Fig. 4. Autocorrelation-based event detection results. 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡×⁡𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡+⁡𝑅𝑒𝑐𝑎𝑙𝑙
                          (10) 

 

where TP denotes true positives, FP false positives, and FN false negatives. By examining these metrics, 

the strengths and limitations of the model in distinguishing between different types of seismic events can be 

more clearly identified, thereby providing a comprehensive assessment of model performance (Bishop, 

2006; Han, Kamber, & Pei, 2012). This study adopts a comparative machine learning performance 

evaluation approach, focusing on empirical differences among SVM kernel configurations under identical 

experimental settings. Therefore, inferential statistical analyses such as p-values, confidence intervals, or 

effect size measurements are not applied, as the objective is model performance comparison rather than 

hypothesis testing (Schölkopf & Smola, 2001; Vapnik, 1998). 

 

4. Results and Discussion 
In this study, the optimal parameters for each SVM kernel are evaluated. The best-performing kernel 

configuration is then selected for model evaluation. In addition, this study compares the performance of the 

SVM model using Z-score normalized data and non-normalized data. The results of the experiments 

conducted in this study are presented as follows. 

4.1. Autocorrelation Results 

At this stage, seismic event analysis is conducted using autocorrelation applied to the dataset, and 

the results are visualized through spectrograms. Fig. 4 presents the seismic signal analysis using time-

domain, autocorrelation, and time–frequency representations. The time-series signal shows a noticeable 

increase in amplitude after approximately 4 seconds, indicating the onset of a seismic event. The 

autocorrelation function displays oscillatory patterns that gradually decay over time, reflecting the temporal 

structure of the signal as well as the growing influence of background noise. In the time–frequency domain, 

the spectrogram highlights a localized high-energy region, represented by yellow–green colors, within the 

mid-frequency range of approximately 15–20 Hz between 5 and 7 seconds, while darker purple regions 

indicate lower energy levels. These representations together support the identification and characterization 

of the observed seismic event.  

4.2. SVM Kernel Results 

In this experiment, three different SVM kernel functions: linear, radial basis function (RBF), and 

polynomial are evaluated to determine the best classification accuracy. The results of the SVM kernel 

evaluations are described below. 

4.2.1 Linear SVM results 
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Table 3 

Linear SVM kernel parameter testing. 

No Cost Parameter (C) Testing Accuracy 

1. 0.001 0.8817 

2. 0.01 0.9014 

3. 0.1 0.9261 

4. 1 0.9310 

5. 10 0.9261 

6. 100 0.9261 

 

Table 4 

Polynomial kernel parameter evaluation. 

No Cost Parameter (C) 
Accuracy 

Degree=1 Degree=2 Degree=3 

1. 100 0.9162 0.9605 - 

2. 200 0.9261 0.9605 - 

3. 300 0.9261 0.9605 - 

4. 400 0.9162 0.9605 - 

5. 500 0.9162 0.9605 - 

 

During the optimization of the linear SVM model, the regularization parameter 𝐶 was systematically 

evaluated to balance the trade-off between model complexity and generalization performance. The tested 

values of 𝐶 (0.001, 0.01, 0.1, 1, 10, and 100) were selected to span a wide range on a logarithmic scale, 

which is commonly adopted in SVM parameter tuning to examine different regularization strengths. Smaller 

values of 𝐶 impose stronger regularization, which may lead to underfitting, whereas larger values allow the 

model to fit the training data more closely and may increase the risk of overfitting. This range is particularly 

relevant for the seismic signal classification task addressed in this study, as the extracted feature vectors 

exhibit variability and may contain noise, requiring an appropriate balance between smooth and flexible 

decision boundaries. 

As shown in Table 3, the testing accuracy increases as the value of 𝐶 rises from 0.001 to 1, indicating 

improved model flexibility and more effective decision boundary formation. Although higher values of 𝐶 (10 

and 100) also produce relatively high accuracy, no further improvement is observed, suggesting that 

increasing model complexity beyond this point does not enhance generalization performance. Therefore, 

since this study emphasizes testing accuracy as the primary performance criterion, 𝐶 = 1 is selected as the 

optimal parameter for the linear SVM model. 

4.2.2 Polynomial SVM results 

The polynomial kernel is a non-linear kernel that is particularly suitable when the training dataset has 

undergone normalization. It should be noted that a polynomial kernel with degree 𝑑 = 1 is mathematically 

equivalent to a linear kernel. Therefore, in this experiment, the evaluation of the polynomial kernel focuses 

on higher-degree configurations in order to better capture non-linear patterns in the seismic data. 

Optimization is performed on the regularization parameter 𝐶 and the polynomial degree d. The values of 𝐶 

tested are 100, 200, 300, 400, and 500, while the polynomial degrees evaluated are 𝑑 = 2 and 𝑑 = 3. The 

results of the polynomial kernel evaluation are presented in Table 4. 

The results in Table 4 demonstrate that the polynomial kernel with degree 𝑑 = 2 consistently yields 

the highest classification accuracy, achieving an average accuracy of 0.9605 across all tested values of the 

regularization parameter 𝐶. Compared to a polynomial degree of 𝑑 = 1, which is equivalent to a linear 

model, the 𝑑 = 2 configuration provides superior performance, indicating its effectiveness in capturing non-

linear patterns in the seismic data. The identical accuracy values obtained for different 𝐶 settings further 

indicate that the model performance is relatively insensitive to the choice of 𝐶 within the tested range. 

Increasing the polynomial degree to 𝑑 = 3 does not result in additional performance gains and may 

introduce unnecessary model complexity. Therefore, the polynomial kernel with degree 𝑑 = 2 is selected 

as the optimal configuration for this study.  

For the linear SVM model, comparable accuracy values are observed for 𝐶 = 0.1, 10, and 100. 

However, the regularization parameter 𝐶 = 1 achieves the highest testing accuracy of 0.931, suggesting an 

optimal balance between bias and variance. Increasing 𝐶 beyond this value does not lead to further 

performance improvement, indicating that excessive relaxation of regularization does not significantly enhance 

generalization. Consequently, 𝐶 = 1 is selected as the optimal regularization parameter for the linear SVM model. 

4.2.3 RBF results 
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Fig. 5. Confusion matrix of the best-performing model. 

 

Table 5 

RBF kernel parameter evaluation. 

No Cost Parameter (C) 

Accuracy 

Gamma 

1 2 3 4 5 

1. 1 0.802 0.817 0.822 0.832 0.827 

2. 10 0.857 0.852 0.857 0.857 0.866 

3. 50 0.866 0.857 0.866 0.866 0.866 

4. 100 0.862 0.857 0.866 0.866 0.866 

 

Table 6 

Model accuracy without normalization. 

No Kernal Accuracy 

1. Linear 0.8325 

2. Polynomial 0.5369 

3. RBF 0.6551 

 

Table 7 

Model accuracy with z-score normalization. 

No Kernal Accuracy 

1. Linear 0.9310 

2. Polynomial 0.9605 

3. RBF 0.8669 

 

The third approach evaluated in this study employs SVM with a radial basis function (RBF) kernel, which 

is commonly used for data that are not linearly separable. Optimization is performed on the regularization 

parameter 𝐶 and the kernel parameter 𝛾. The tested values for 𝐶 include 1, 10, 50, 100, and 500, while the 

values of 𝛾 range from 1 to 5. The evaluation results for the RBF kernel are presented in Table 5. 

Based on the results in Table 5, the parameter 𝛾 = 2 produces the lowest accuracy among the tested 

values. The best performance for the RBF kernel is achieved with 𝐶 = 10, 𝐶 = 50, and 𝐶 = 100, all yielding 

an accuracy of 0.866. 

4.3. Analysis of Z-Score Normalization Accuracy Results 

This section presents a comparative analysis of model performance using normalized and non-

normalized data. Tables 6 and 7 summarize the SVM classification accuracy obtained without normalization 

and with Z-score normalization, respectively, using the best-performing parameters for each kernel. 

As shown in Tables 6 and 7, there is a significant improvement in classification accuracy when Z-

score normalization is applied. Models trained on normalized data consistently outperform those trained on 

non-normalized data. This improvement can be attributed to differences in feature value ranges across 

classes, which make it difficult for the model to learn meaningful patterns without normalization. Without 

normalization, the model tends to produce biased predictions by focusing on features with larger value 

ranges. 
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Table 8 

Classification report of the proposed model. 

Class Precision Recall F1-score Support 

0 1.00 1.00 1.00 1 

1 0.87 1.00 0.93 26 

2 1.00 0.50 0.67 2 

3 0.98 0.98 0.98 109 

4 0.97 0.95 0.96 39 

5 1.00 1.00 1.00 1 

6 1.00 0.50 0.67 2 

7 0.95 0.91 0.93 23 

Accuracy   0.96 203 

Macro Average 0.97 0.86 0.89 203 

Weighted Average 0.96 0.96 0.96 203 

 

Table 9 

Comparison of the proposed method with previous studies. 

Study/Method Feature Extraction Classifier 
No. of 

Classes 
Accuracy 

Tempola et al. (2018) Time-domain features KNN 4 0.89 

Lara-Cueva et al. 

(2017) 

Spectral features SVM 5 0.92 

Tang et al. (2020) Frequency features SVM 6 0.93 

Proposed Method  Autocorrelation-based 

features 

Polynomial SVM, degree = 

2 

8 0.9605 

 

4.4. Confusion Matrix 

The results of the confusion matrix evaluation are presented in Fig. 5. As shown in Fig. 5, the 

confusion matrix indicates that the proposed model achieves strong classification performance across eight 

classes, with most samples correctly classified along the main diagonal. Class 3 exhibits the highest 

accuracy, with 107 true positives and minimal misclassification, followed by Classes 1, 4, and 7, which also 

show high correct prediction rates. Misclassifications are mainly observed in classes with limited samples, 

particularly Classes 2 and 6, suggesting that class imbalance affects predictive reliability for 

underrepresented classes. Minor confusion between certain class pairs indicates partial feature overlap. 

Overall, the confusion matrix confirms that the model effectively discriminates among the majority of classes, 

consistent with the reported accuracy and F1-score results.  

As shown in Table 8, the proposed model achieves an overall accuracy of 0.96 on 203 samples, 

indicating strong classification performance. Classes with sufficient data, particularly Class 3, demonstrate 

robust results with precision and recall values of 0.98, while Classes 4 and 7 also exhibit high F1-scores of 

0.96 and 0.93, respectively. Perfect scores observed in Classes 0 and 5 should be interpreted cautiously 

due to their limited sample sizes. In contrast, reduced recall values in Classes 2 and 6 highlight the impact 

of class imbalance. The macro-average F1-score of 0.89 reflects inter-class performance variability, 

whereas the weighted F1-score of 0.96 confirms reliable overall model performance. 

4.5. Overall Performance Comparison 

To evaluate the broader applicability of the proposed framework and to contextualize its performance 

within existing research, a comparative assessment is conducted using representative results reported in 

previous studies. This comparison highlights differences in feature extraction techniques, classification 

models, the number of seismic event categories, and achieved classification accuracy. 

As summarized in Table 9, earlier studies have reported competitive performance using different 

combinations of features and classifiers for seismic signal classification. Tempola, Muhammad, & Khairan 

(2018) employed time-domain features with a KNN classifier to distinguish four classes, achieving an 

accuracy of 0.89. Lara-Cueva, Benítez, Paillacho, Villalva, & Rojo-Álvarez (2018) extended the classification 

task to five event types by incorporating spectral features and SVM, resulting in improved accuracy. A 

further increase in classification performance was reported by Tang, Zhang, & Wen (2020), who utilized 

frequency-based features and SVM to classify six seismic event categories.  

In contrast, the proposed approach attains the highest accuracy of 0.9605 while simultaneously 

handling a more challenging classification scenario involving eight volcanic seismic event classes. This 

improvement reflects the combined effect of autocorrelation-based feature representation, which 
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emphasizes inherent temporal structures in seismic signals, and Z-score normalization, which enhances 

model stability by reducing feature scale disparities. Moreover, the polynomial SVM kernel with degree d = 

2 provides an effective balance between model complexity and generalization capability, enabling accurate 

discrimination of non-linear seismic patterns.  

It should be noted that this study does not perform a direct quantitative comparison with a manual 

seismic classification system. Instead, manual analysis is treated as a conceptual baseline representing 

expert-driven interpretation, which is commonly characterized by subjectivity, high time consumption, and 

limited scalability under large data volumes and noisy conditions. Therefore, the evaluation in this study 

focuses on assessing whether the proposed automated framework can deliver stable, reproducible, and 

high-accuracy classification results that address the operational limitations inherent in manual seismic 

analysis, rather than benchmarking numerical performance against human interpretation.  

Overall, the comparative results indicate that the proposed framework not only achieves higher 

classification accuracy than previously reported automated methods but also demonstrates improved 

robustness and generalizability as the number of target classes increases. These findings confirm the 

effectiveness of the proposed method for complex multi-class volcanic seismic signal classification tasks. 

4.6. Discussion 

Overall, the experimental findings demonstrate that the proposed framework is capable of capturing 

salient patterns in seismic signals by integrating autocorrelation-based characterization with SVM 

classification. Variations in performance across different SVM kernels can be attributed to differences in 

feature space non-linearity and the stabilizing effect of data normalization. In this context, Z-score 

normalization substantially enhances classification robustness by reducing feature scale disparities and 

facilitating more effective kernel optimization. Classification errors are predominantly observed in classes 

with limited data availability and overlapping signal characteristics, a well-known issue in seismic event 

classification. Nevertheless, the model maintains reliable performance for dominant classes, as evidenced 

by the strong diagonal dominance in the confusion matrix and consistently high weighted evaluation metrics. 

These results establish a clear foundation for further discussion regarding model limitations and potential 

areas for improvement, which are addressed in the following chapter. Despite the promising results, this 

study has several limitations that should be acknowledged. One important limitation is class imbalance, 

which arises from the limited availability of seismic records for certain event types. Although the dataset 

contains sufficient samples for dominant classes, some classes are underrepresented, leading to uneven 

class distributions. This imbalance contributes to higher misclassification rates in minority classes, 

particularly when signal characteristics overlap. Therefore, the observed classification errors are influenced 

not only by limited data availability but also by the resulting class imbalance, which remains a fundamental 

challenge in seismic event classification. 
 

5. Conclusions 
Based on the findings of this study, the integration of autocorrelation-based signal characterization 

with Support Vector Machine (SVM) classification is shown to be effective for analyzing volcanic seismic 

signals. The experiments were conducted using volcanic seismic recordings obtained from authorized 

monitoring stations, ensuring that the conclusions are supported by real observational data.  

Among the evaluated kernel functions, the polynomial SVM kernel with a degree of two delivers the 

most reliable classification performance, demonstrating its strong capability in capturing non-linear patterns 

inherent in seismic data. This is supported by its highest achieved classification accuracy of 0.9605, which 

exceeds that of the linear (0.9310) and radial basis function (RBF) (0.8669) kernels.  

Furthermore, the results confirm that Z-score normalization plays a critical role in enhancing model 

stability and classification reliability by standardizing feature distributions. When normalization is applied, the 

classification accuracy of the polynomial kernel increases substantially from 0.5369 to 0.9605, while the 

linear kernel improves from 0.8325 to 0.9310, highlighting the importance of feature scaling in SVM-based 

seismic classification.  

Despite the strong overall performance, reduced classification reliability is observed for several 

seismic classes with limited training samples. This limitation reflects the impact of class imbalance caused 

by restricted data availability in minority classes rather than shortcomings of the proposed framework itself, 

as indicated by recall values as low as 0.50 in these categories. Accordingly, future work will focus on data 

imbalance handling strategies, including undersampling, oversampling, and synthetic data generation 

techniques such as the Synthetic Minority Over-sampling Technique (SMOTE), to further enhance the 

robustness  and  generalization  capability  of  the  proposed  approach  in   operational   volcanic   seismic  
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monitoring systems.        
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