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Abstract

Volcanic eruption disasters occur frequently in Indonesia due to the high density of active volcanoes,
posing persistent risks to surrounding communities and infrastructure. Effective mitigation of these
hazards is challenged by limitations in monitoring systems, particularly related to instrumentation
coverage and the availability of expert human resources. One critical aspect of volcanic monitoring is the
accurate classification of seismic activity, which reflects subsurface volcanic processes and supports
timely hazard assessment. This study addresses the challenge of reliably classifying volcanic seismic
events by proposing an integrated framework that combines autocorrelation-based signal
characterization with Support Vector Machine (SVM)-based multi-class classification, supported by Z-
score normalization during data preprocessing. The framework is designed to enhance feature
consistency and robustness against noise commonly present in volcanic seismic signals. To evaluate its
effectiveness, three SVM kernel functions—linear, polynomial, and radial basis function (RBF)—are
systematically assessed under identical experimental conditions. The results demonstrate that the
polynomial SVM kernel with a degree of two provides the most reliable classification performance,
achieving an accuracy of 0.9605. In addition, the application of Z-score normalization substantially
improves model stability and overall performance across all kernel configurations, indicating that feature
scaling plays a critical role in SVM-based seismic classification. Performance variations among kernels
suggest that non-linear feature representations are better suited to capture the complex characteristics
of volcanic seismic signals, while classification errors are primarily influenced by class imbalance in
underrepresented event types. These findings indicate that the proposed framework effectively supports
automated volcanic seismic signal analysis and has the potential to enhance the reliability of seismic-
based volcanic activity monitoring.
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1. Introduction

Volcanic eruptions are natural hazards that frequently occur in Indonesia due to the large number of
active volcanoes distributed across the region. These events pose significant risks to surrounding
communities and infrastructure, making continuous monitoring and early identification of volcanic activity
essential (Tempola, Muhammad, & Khairan, 2018; Marzocchi, Selva, & Jordan, 2021). Limitations in
monitoring systems, particularly in terms of instrumentation availability and human resources, further
increase the risk of delayed hazard assessment and mitigation (Ririh, Laili, Wicaksono, & Tsurayya, 2020;
Thelen, Matoza, & Hotovec-Ellis, 2022). Seismic signals represent one of the most important parameters in
volcano monitoring, as they reflect subsurface processes such as magma movement, rock fracturing, and
material collapse. Different types of volcanic seismic events exhibit distinct temporal and spectral
characteristics; however, waveform similarity, low signal-to-noise ratio (SNR), and complex environmental
noise often complicate manual identification (McNutt, 2025; Chouet & Matoza, 2013). These challenges
motivate the adoption of automated approaches for seismic signal analysis.
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Recent advances in artificial intelligence, particularly machine learning (ML), have enabled the
development of data-driven methods capable of learning complex patterns from high-dimensional data
(Alzubi, Nayyar, & Kumar, 2018; Bergen, Johnson, Hoop, & Beroza, 2019; Mousavi, Ellsworth, Zhu,
Chuang, & Beroza, 2020). ML techniques have been widely applied to volcanic seismic event classification
and have demonstrated promising performance in improving accuracy and efficiency (Anggian, Hidayat, &
Furqgon, 2020; Tempola, Muhammad, & Khairan, 2018; Ross, Meier, Hauksson, & Heaton, 2018). Among
various ML algorithms, Support Vector Machine (SVM) has shown strong performance in handling non-
linear data distributions and constructing optimal decision boundaries in high-dimensional feature spaces
(Handayanto, Latifa, Saputro, & Waliyansyah, 2019; Rahutomo, Saputra, & Fidyawan, 2018). In the context
of seismology, SVM has been successfully applied to classify seismic events and distinguish different types
of volcanic signals, particularly when training data are limited (Tang, Zhang, & Wen, 2020; Manley, et al.,
2022). Furthermore, recent studies have shown that machine learning approaches remain effective under
noisy conditions when combined with appropriate preprocessing and feature extraction strategies (Meier,
et al., 2019).

Data preprocessing plays a crucial role in improving classification performance. Autocorrelation
remains a reliable technique for seismic event detection due to its ability to emphasize coherent and
repetitive signal patterns (Perdana, Fatichah, & Purwitasari, 2015; Titos, Bueno, Garcia, Benitez, & Ibafiez,
2019; Gibbons & Ringdal, 2006). In addition, data normalization techniques such as Z-score normalization
are widely adopted to reduce feature scale disparities, improve model convergence, and enhance
classification robustness (Ambarwari, Adrian, & Herdiyeni, 2020; Karo & Hendriyana, 2022; Singh & Singh,
2020). Based on these considerations, this study proposes a volcanic seismic activity classification
framework that integrates autocorrelation-based event detection, Z-score normalization for data
preprocessing, and SVM for multi-class classification. The proposed approach aims to improve classification
accuracy and robustness against noise, thereby supporting more reliable volcanic activity monitoring.

2. Literature Review
2.1. Support Vector Machine (SVM)

Support Vector Machine (SVM) is a supervised learning algorithm originally developed by Vapnik and
colleagues, grounded in the principle of Structural Risk Minimization (SRM). This principle aims to enhance
generalization performance by balancing empirical error and model complexity. The fundamental objective
of SVM is to construct an optimal separating hyperplane that maximizes the margin between classes within
the feature space (Cortes & Vapnik, 1995; Vapnik, 1998; Handayanto, Latifa, Saputro, & Waliyansyah,
2019). SVM supports both linear and non-linear classification. For linearly separable data, a linear
hyperplane is sufficient, whereas non-linearly separable data are handled through kernel-based
transformations. Kernel functions implicitly map the original input space into a higher-dimensional feature
space, enabling linear separation in the transformed domain. Commonly used kernels include linear,
polynomial, and radial basis function (RBF) kernels (Bishop, 2006; Schoélkopf & Smola, 2001).

a) Architecture and Workflow
From an architectural standpoint, Support Vector Machine (SVM) consists of an input feature space,
a set of support vectors, an optimal hyperplane, and a margin that separates classes. Support vectors
correspond to training samples located closest to the decision boundary and play a decisive role in
determining the hyperplane position. The margin, defined as the distance between the hyperplane and
the nearest support vectors, is maximized to improve classification robustness and generalization
capability (Vapnik, 1998; Cortes & Vapnik, 1995). The SVM workflow begins with feature vector input,
followed by kernel-based mapping when required to handle non-linearly separable data. The optimal
hyperplane is then obtained by solving a constrained optimization problem that balances margin
maximization and classification error. Classification of unseen data is performed by evaluating the sign
of the resulting decision function (Bishop, 2006; Scholkopf & Smola, 2001). The overall architecture
and workflow of the SVM classifier are illustrated in Fig. 1.

b) Mathematical Formulation
For linear SVM, the decision function is expressed in Eq. 1:

f)=w-x+b (1)

where w represents the weight vector and b denotes the bias term. This formulation aims to determine
an optimal separating hyperplane that maximizes the margin between classes in the feature space
(Cortes & Vapnik, 1995; Vapnik, 1998).
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Fig. 1. Architecture and workflow of the Support Vector Machine.

For non-linear SVM, the decision function is defined in Eq. 2:
fO) =X aiyiK (x;, %) +b 2)

where q; are the Lagrange multipliers, y; are the class labels, x; denote the support vectors, and K ()
represents the kernel function that implicitly maps the input data into a higher-dimensional feature
space (Scholkopf & Smola, 2001).

In this study, three kernel functions: linear, polynomial, and radial basis function (RBF)—are employed
to evaluate different levels of feature space complexity in volcanic seismic signal classification. The
linear kernel is defined in Eq. 3:

K(xi,xj) =X .X'j (3)

The linear kernel assumes linear separability in the original feature space and serves as a baseline
model for assessing the discriminative capability of the extracted seismic features (Bishop, 2006). The
polynomial kernel is expressed in Eq. 4:

K(x;, %) = (yx; - x; + )4 (4)

where y is a scaling parameter, r is a constant term, and d denotes the polynomial degree. The
polynomial kernel enables the modeling of non-linear feature interactions, which are commonly
observed in seismic signals due to complex subsurface volcanic processes (Schélkopf & Smola, 2001;
Bishop, 2006). The RBF kernel is defined in Eq. 5:

K(x;,x;) = exp (=y Il x; — x; 1) )

The RBF kernel is frequently adopted due to its flexibility in modeling complex non-linear relationships and
its effectiveness in handling noisy and high-dimensional data (Bishop, 2006; Tang, Zhang, & Wen, 2020).
This property makes the RBF kernel particularly suitable for seismic signal classification, where overlapping
waveform characteristics and environmental noise are commonly encountered (Malfante, et al., 2018).
The evaluation of these three kernel functions allows a systematic assessment of model robustness
and generalizability across different feature space representations, which is essential for multi-class
volcanic seismic signal classification.
2.2. Autocorrelation
Autocorrelation is a signal processing technique that quantifies the similarity between a signal and a
time-shifted version of itself. By evaluating the degree of self-similarity across different time lags,
autocorrelation reveals repeating patterns, periodic structures, and coherent energy that may not be clearly
observable in the time domain. In seismic analysis, autocorrelation has been widely adopted for event
detection and signal characterization, particularly in environments dominated by noise and low signal-to-
noise ratios (Gibbons & Ringdal, 2006).
a) Mathematical Formulation
For a discrete seismic signal x[n] of length N, the autocorrelation function R, (k) is defined in Eq. 6:

Ry (k) = X0~ " x[n]x[n + k] (6)

where k denotes the time lag and x[n + k] represents the signal shifted by k samples. This formulation
measures the similarity between the original signal and its delayed version.

To facilitate comparison across signals with different amplitudes, a normalized autocorrelation function
is commonly employed as defined Eq. 7:
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where R,,(0) corresponds to the signal energy at zero lag. Normalization constrains the
autocorrelation values to the interval [-1,1], enabling consistent interpretation of correlation strength.

b) Interpretation and Application in Seismic Analysis
In seismic applications, significant peaks in the autocorrelation function indicate the presence of
coherent or repeating waveform structures. Such behavior is often associated with repeating
earthquakes, volcanic tremor, or resonance processes within volcanic systems. In contrast, incoherent
background noise typically produces low and irregular autocorrelation values across time lags.
Previous studies have demonstrated that autocorrelation-based methods are effective in enhancing
the detection of low-magnitude seismic events that may be missed by conventional amplitude-based
techniques (Gibbons & Ringdal, 2006). Furthermore, autocorrelation has been successfully integrated
with feature extraction and pattern recognition approaches to improve the interpretability and
robustness of seismic signal analysis (Perdana, Fatichah, & Purwitasari, 2015).

c) Application Context in This Study
In this study, autocorrelation is utilized as a signal characterization approach to emphasize intrinsic
temporal structures within seismic waveforms. By highlighting coherent energy patterns prior to
classification, autocorrelation contributes to improved feature discrimination and supports subsequent
machine learning—based analysis.

2.3. Related Work

Numerous studies have explored the use of machine learning techniques for seismic signal
classification in both tectonic and volcanic contexts. Tang, Zhang, & Wen (2020) applied Support Vector
Machine (SVM) to classify seismic events in the Tianshan orogenic belt using spectral features derived from
P-wave and S-wave characteristics, achieving high classification accuracy. Their findings highlight the
effectiveness of SVM in handling complex seismic datasets. Lara-Cueva, Benitez, Paillacho, Villalva, & Rojo-
Alvarez (2018) investigated multi-class SVM for classifying volcanic seismic signals recorded at Cotopaxi
volcano, with a focus on long-period (LP) and volcano-tectonic (VT) events. By integrating an initial
detection stage with SVM-based classification, their study demonstrated promising performance while also
revealing challenges related to waveform similarity across event types.

Beyond SVM-based approaches, Malfante, et al. (2018) conducted a comprehensive study on
machine learning applications for volcanic seismic signals and emphasized that model performance is
strongly influenced by preprocessing strategies and feature representation. Their work underscores the
importance of addressing noise complexity and non-stationary signal characteristics. Autocorrelation-based
detection methods have also been widely reported in seismic research. Gibbons & Ringdal (2006)
demonstrated that autocorrelation significantly improves the detection of low-magnitude seismic events that
are difficult to identify using conventional techniques. Similar approaches have been adopted in various
seismic monitoring studies to enhance detection sensitivity under low signal-to-noise ratio conditions.

Despite these advances, most previous studies focus primarily on direct classification of seismic
signals without explicitly integrating time-series based event detection and systematic data normalization.
In addition, the impact of feature normalization, particularly Z-score normalization, on SVM performance in
multi-class volcanic seismic classification remains insufficiently explored. These limitations motivate the
development of an integrated framework that combines autocorrelation-based event detection, data
normalization, and comprehensive kernel evaluation to improve the robustness and reliability of volcanic
seismic signal classification.

3. Methods

In general, this study consists of three main stages: data preprocessing, data modeling, and model
evaluation. An overview of the research stages is presented in Fig. 2. Fig. 2 illustrates the overall research
workflow adopted in this study, beginning with problem identification to define the scope and objectives of
the investigation. This initial stage focuses on recognizing key challenges in volcanic seismic data analysis
and formulating research questions to be addressed, ensuring that subsequent methodological steps
remain aligned with the study aims. Following this stage, data collection is conducted by acquiring volcanic
seismic signal recordings relevant to the case study. These recordings constitute the primary dataset and
represent various types of volcanic seismic activity, providing a solid foundation for further processing and
analysis. The workflow then proceeds to data preprocessing, which is essential for ensuring data quality
and suitability for modeling. During this phase, raw seismic signals are subjected to event detection and
normalization procedures to reduce noise effects, standardize feature scales, and preserve important signal
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Fig. 2. Research workflow.

characteristics required for reliable analysis. After preprocessing, data modeling is performed as a single,
clearly defined stage. In this phase, machine learning techniques are applied to develop a classification
model capable of learning discriminative patterns from the processed seismic data and distinguishing
among different seismic event classes. Finally, the developed model is evaluated to assess overall
performance and reliability of the results. Although the workflow stages are presented using general labels,
each stage reflects specific processes described in the Methods section, including autocorrelation-based
event detection, data normalization, and machine learning—based classification using Support Vector
Machine.

3.1. Dataset Collection

The data used in this study consist of volcanic seismic signal recordings collected from monitoring
stations surrounding Mount Merapi, Indonesia, during the period 2019 - 2021. The seismic signals were
recorded within a frequency range of 0.5 - 50 Hz, which is appropriate for capturing a wide range of volcanic
seismic activities. The dataset comprises 5,000 seismic signal samples, which were labeled by seismic
analysts according to established volcanic seismic classifications.

The seismic signals were categorized into eight classes: AP (we use a localized term Awan Panas),
associated with pyroclastic density currents or hot cloud events; DG (Deep Volcanic Earthquake),
representing seismic activity originating from deeper volcanic structures related to magma movement; Low
Frequency events, characterized by dominant low-frequency components and commonly linked to fluid or
gas movement within the volcanic system; Tremor, referring to continuous or semi-continuous seismic
vibrations typically associated with sustained magma or gas flow; Multiple-phase events, which contain
more than one identifiable seismic phase within a single signal; Rockfall events, generated by surface
material collapse or gravitational mass movement; VT-A, representing shallow volcano-tectonic
earthquakes caused by brittle rock failure; and VT-B, corresponding to deeper volcano-tectonic
earthquakes associated with stress changes within the volcanic structure.

For the classification process, the Support Vector Machine (SVM) model is trained using feature
representations extracted from seismic signals after event detection and normalization. These features
capture essential temporal and frequency-related characteristics of the waveforms, enabling effective
discrimination among different seismic event classes. Autocorrelation is applied directly to the raw seismic
signals prior to normalization to preserve their intrinsic temporal structure, while time—frequency analysis is
used to retain both temporal patterns and spectral content. Details of the preprocessing and feature
extraction procedures are provided in the Methods section.
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Table 1

Example of the dataset.

No X1 X2 X3 Y
1 3.734 1.437 6.262 1
2 8.820 -1.354 1196 3
3 4266 1122 -1818 4
4 2205 -9590 8223 3
5 1296 -1614 5618 7

Table 2

Example of Z-score normalized data.
No X1 X2 X3 Y
1 -0.224 -0.190 -0.166 1
2 1.001 -0.299 -0.262 3
3 —-0.199 1.122 -0.170 4
4 0.114 —-0.179 0.901 3
5 —0.302 0.561 -0.236 7

To evaluate the proposed classification model, the dataset is divided into training and testing subsets
using a 90:10 ratio, ensuring sufficient data for model learning while retaining an independent test set for
objective performance assessment in a multi-class setting. The training set consists of labelled seismic
signals used for model learning, whereas the testing set contains unseen samples for evaluating model
generalization. An example of the dataset structure is presented in Table 1.

The training dataset comprises 5,000 seismic signal samples and is arranged to maintain a relatively
balanced distribution across the eight seismic event classes, thereby reducing potential class bias and
supporting fair performance evaluation. Prior to classification, seismic event detection is performed using
autocorrelation-based analysis with a normalized threshold of 0.5, which effectively distinguishes coherent
seismic events from background noise.

During model optimization, kernel-specific parameter ranges are selected according to the
characteristics of each SVM kernel. For the polynomial kernel, higher values of the regularization parameter
C are evaluated to avoid underfitting after Z-score normalization and to capture non-linear feature
relationships. In contrast, the RBF kernel is tested starting from moderate C values, as very small values
tend to over-smooth the decision boundary and reduce class separability. These parameter selections follow
established SVM tuning practices and enable a fair and meaningful performance comparison.

The dataset consists of feature vectors X, that represent seismic signal attributes extracted from
waveform data, including amplitude, frequency, and temporal characteristics. These features are used as
input variables for the machine learning model. The target variable Y denotes the seismic event class, where
0 corresponds to AP, 1 to DG, 2 to Low Frequency events, 3 to Tremor, 4 to Multiple-phase events, 5 to
Rockfall, 6 to VT-A, and 7 to VT-B.

The seismic signals are modeled using feature vectors that encode key waveform characteristics.
Feature X; represents amplitude-based attributes associated with signal energy, X, describes frequency-
related properties derived from spectral analysis, and X5 captures temporal or morphological characteristics
of the waveform. These features collectively form a compact representation of seismic signal attributes that
facilitates the classification of seismic event types, as indicated by the output variable Y.

3.2. Data Preprocessing

Data preprocessing is a crucial step in optimizing the SVM model to improve classification accuracy.
The seismic signals used in this study contain a significant number of low-frequency components; therefore,
signal features and events must be analyzed prior to modelling. The preprocessing steps applied in this
study are described as follows.

a) Autocorrelation
In this stage, seismic signals are processed for event detection by transforming the raw waveforms
into autocorrelation representations using the np.correlate() function from the Python NumPy library.
Event detection is performed by comparing the maximum amplitude of the autocorrelation output with
a predefined threshold value of 0.5. Signals whose autocorrelation amplitudes exceed this threshold
are classified as containing seismic events. The detected signals are subsequently converted into
spectrogram representations and then assigned corresponding labels for further analysis.

b) Data Normalization
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Fig. 3. (a) Before and (b) after data modeling results.

Before model training, data normalization is performed using the Z-score method. Zero-mean
normalization is applied by using the mean and standard deviation of the data, resulting in standardized
features with a mean value of 0 and a standard deviation of 1 (Han, Kamber, & Pei, 2012; Singh &
Singh, 2020). Z-score normalization is employed to reduce the effect of unbalanced value ranges
across features. An example of Z-score normalized data is shown in Table 2.

3.3. Data Modelling

After completing the data preprocessing stage, a Support Vector Machine (SVM) model is
constructed to classify seismic signals into multiple classes. The preprocessed seismic features serve as
the input data before modeling, where feature consistency is ensured through autocorrelation-based
characterization and Z-score normalization. During the modeling process, the SVM maps the input features
into an appropriate feature space and learns decision boundaries to achieve class separation.

Three kernel functions: linear, polynomial, and radial basis function (RBF) are evaluated to assess their
capability in modeling the data. For the linear kernel, different values of the regularization parameter C are tested
to balance margin maximization and classification error. The polynomial kernel is examined by varying both the
polynomial degree and C to capture non-linear patterns, while the RBF kernel is analyzed using different
combinations of C and y to model complex decision boundaries. The resulting feature space reflects the data
representation after modeling, where class separation is achieved based on the learned decision functions.

The transformation of data representations before and after modeling is illustrated in Fig. 3. Prior to
modeling, the seismic signals are transformed into representative features through autocorrelation-based
characterization and normalized using the Z-score method. After modeling, the Support Vector Machine
(SVM) maps the input features into a discriminative feature space and learns decision boundaries to
separate different types of volcanic seismic events. This illustration highlights the transformation of volcanic
seismic data during the modeling process.

3.4. Model Evaluation

Model evaluation in this study is conducted using a confusion matrix to assess the performance of
the classification model. The confusion matrix compares predicted class labels with the true class labels,
providing information on both correctly classified and misclassified samples for each class. This
representation allows the evaluation of overall classification accuracy while also highlighting the distribution
of classification errors across different seismic event categories. Furthermore, the confusion matrix enables
the calculation of class-specific performance metrics, including precision, recall, and F1-score, which are
particularly important for multi-class seismic signal classification with potential class imbalance.

Precision is defined as the proportion of correctly predicted positive samples among all predicted
positive samples and is calculated as in Eq. 8:
TP

Precision = —— (8)
TP + FP

Recall, as defined in Eq. 9, represents the proportion of correctly predicted positive samples among
all actual positive samples:

TP
TP + FN

Recall =

9)

The F1-score, as formulated in Eq. 10, provides a balanced measure between precision and recall
and is computed as the harmonic mean of these two metrics:
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Precision x Recall
F1—score = ——— (10)

Precision + Recall

where TP denotes true positives, FP false positives, and FN false negatives. By examining these metrics,
the strengths and limitations of the model in distinguishing between different types of seismic events can be
more clearly identified, thereby providing a comprehensive assessment of model performance (Bishop,
2006; Han, Kamber, & Pei, 2012). This study adopts a comparative machine learning performance
evaluation approach, focusing on empirical differences among SVM kernel configurations under identical
experimental settings. Therefore, inferential statistical analyses such as p-values, confidence intervals, or
effect size measurements are not applied, as the objective is model performance comparison rather than
hypothesis testing (Scholkopf & Smola, 2001; Vapnik, 1998).

4. Results and Discussion

In this study, the optimal parameters for each SVM kernel are evaluated. The best-performing kernel
configuration is then selected for model evaluation. In addition, this study compares the performance of the
SVM model using Z-score normalized data and non-normalized data. The results of the experiments
conducted in this study are presented as follows.
4.1. Autocorrelation Results

At this stage, seismic event analysis is conducted using autocorrelation applied to the dataset, and
the results are visualized through spectrograms. Fig. 4 presents the seismic signal analysis using time-
domain, autocorrelation, and time—frequency representations. The time-series signal shows a noticeable
increase in amplitude after approximately 4 seconds, indicating the onset of a seismic event. The
autocorrelation function displays oscillatory patterns that gradually decay over time, reflecting the temporal
structure of the signal as well as the growing influence of background noise. In the time—frequency domain,
the spectrogram highlights a localized high-energy region, represented by yellow—green colors, within the
mid-frequency range of approximately 15-20 Hz between 5 and 7 seconds, while darker purple regions
indicate lower energy levels. These representations together support the identification and characterization
of the observed seismic event.
4.2. SVM Kernel Results

In this experiment, three different SVM kernel functions: linear, radial basis function (RBF), and
polynomial are evaluated to determine the best classification accuracy. The results of the SVM kernel
evaluations are described below.
4.2.1 Linear SVM results
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Table 3
Linear SVM kernel parameter testing.
No Cost Parameter (C) Testing Accuracy

1. 0.001 0.8817
2. 0.01 0.9014
3. 0.1 0.9261
4. 1 0.9310
5. 10 0.9261
6. 100 0.9261
Table 4
Polynomial kernel parameter evaluation.

Accuracy
No  Cost Parameter (C) Degree=1 Degree=2 Degree=3
1. 100 0.9162 0.9605 -
2. 200 0.9261 0.9605 -
3. 300 0.9261 0.9605 -
4. 400 0.9162 0.9605 -
5. 500 0.9162 0.9605 -

During the optimization of the linear SVM model, the regularization parameter C was systematically
evaluated to balance the trade-off between model complexity and generalization performance. The tested
values of € (0.001, 0.01, 0.1, 1, 10, and 100) were selected to span a wide range on a logarithmic scale,
which is commonly adopted in SVM parameter tuning to examine different regularization strengths. Smaller
values of C impose stronger regularization, which may lead to underfitting, whereas larger values allow the
model to fit the training data more closely and may increase the risk of overfitting. This range is particularly
relevant for the seismic signal classification task addressed in this study, as the extracted feature vectors
exhibit variability and may contain noise, requiring an appropriate balance between smooth and flexible
decision boundaries.

As shown in Table 3, the testing accuracy increases as the value of C rises from 0.001 to 1, indicating
improved model flexibility and more effective decision boundary formation. Although higher values of € (10
and 100) also produce relatively high accuracy, no further improvement is observed, suggesting that
increasing model complexity beyond this point does not enhance generalization performance. Therefore,
since this study emphasizes testing accuracy as the primary performance criterion, C = 1 is selected as the
optimal parameter for the linear SYM model.

4.2.2 Polynomial SVM results

The polynomial kernel is a non-linear kernel that is particularly suitable when the training dataset has
undergone normalization. It should be noted that a polynomial kernel with degree d = 1 is mathematically
equivalent to a linear kernel. Therefore, in this experiment, the evaluation of the polynomial kernel focuses
on higher-degree configurations in order to better capture non-linear patterns in the seismic data.
Optimization is performed on the regularization parameter € and the polynomial degree d. The values of C
tested are 100, 200, 300, 400, and 500, while the polynomial degrees evaluated are d = 2 and d = 3. The
results of the polynomial kernel evaluation are presented in Table 4.

The results in Table 4 demonstrate that the polynomial kernel with degree d = 2 consistently yields
the highest classification accuracy, achieving an average accuracy of 0.9605 across all tested values of the
regularization parameter €. Compared to a polynomial degree of d = 1, which is equivalent to a linear
model, the d = 2 configuration provides superior performance, indicating its effectiveness in capturing non-
linear patterns in the seismic data. The identical accuracy values obtained for different C settings further
indicate that the model performance is relatively insensitive to the choice of € within the tested range.
Increasing the polynomial degree to d = 3 does not result in additional performance gains and may
introduce unnecessary model complexity. Therefore, the polynomial kernel with degree d = 2 is selected
as the optimal configuration for this study.

For the linear SVM model, comparable accuracy values are observed for € = 0.1, 10, and 100.
However, the regularization parameter € = 1 achieves the highest testing accuracy of 0.931, suggesting an
optimal balance between bias and variance. Increasing € beyond this value does not lead to further
performance improvement, indicating that excessive relaxation of regularization does not significantly enhance
generalization. Consequently, C = 1 is selected as the optimal regularization parameter for the linear SVM model.
4.2.3 RBF results
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Table 5
RBF kernel parameter evaluation.
Accuracy

No Cost Parameter (C) Gamma

1 2 3 4 5
1 1 0.802 0.817 0.822 0.832 0.827
2. 10 0.857 0.852 0.857 0.857 0.866
3. 50 0.866 0.857 0.866 0.866 0.866
4 100 0.862 0.857 0.866 0.866 0.866
Table 6
Model accuracy without normalization.
No Kernal Accuracy
1. Linear 0.8325
2. Polynomial 0.5369
3. RBF 0.6551
Table 7
Model accuracy with z-score normalization.
No Kernal Accuracy
1. Linear 0.9310
2. Polynomial 0.9605
3. RBF 0.8669

The third approach evaluated in this study employs SVM with a radial basis function (RBF) kernel, which
is commonly used for data that are not linearly separable. Optimization is performed on the regularization
parameter C and the kernel parameter y. The tested values for C include 1, 10, 50, 100, and 500, while the
values of y range from 1 to 5. The evaluation results for the RBF kernel are presented in Table 5.

Based on the results in Table 5, the parameter y = 2 produces the lowest accuracy among the tested
values. The best performance for the RBF kernel is achieved with ¢ = 10, € = 50, and C = 100, all yielding
an accuracy of 0.866.

4.3. Analysis of Z-Score Normalization Accuracy Results

This section presents a comparative analysis of model performance using normalized and non-
normalized data. Tables 6 and 7 summarize the SVM classification accuracy obtained without normalization
and with Z-score normalization, respectively, using the best-performing parameters for each kernel.

As shown in Tables 6 and 7, there is a significant improvement in classification accuracy when Z-
score normalization is applied. Models trained on normalized data consistently outperform those trained on
non-normalized data. This improvement can be attributed to differences in feature value ranges across
classes, which make it difficult for the model to learn meaningful patterns without normalization. Without
normalization, the model tends to produce biased predictions by focusing on features with larger value
ranges.
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Table 8
Classification report of the proposed model.
Class Precision Recall F1-score Support
0 1.00 1.00 1.00 1
1 0.87 1.00 0.93 26
2 1.00 0.50 0.67 2
3 0.98 0.98 0.98 109
4 0.97 0.95 0.96 39
5 1.00 1.00 1.00 1
6 1.00 0.50 0.67 2
7 0.95 0.91 0.93 23
Accuracy 0.96 203
Macro Average 0.97 0.86 0.89 203
Weighted Average 0.96 0.96 0.96 203
Table 9
Comparison of the proposed method with previous studies.
Study/Method Feature Extraction Classifier Cl\llo. of Accuracy
asses
Tempola et al. (2018) Time-domain features KNN 4 0.89
Lara-Cueva et al. Spectral features SVM 5 0.92
(2017)
Tang et al. (2020) Frequency features SVM 6 0.93
Proposed Method Autocorrelation-based Polynomial SVM, degree = 8 0.9605

features 2

4.4. Confusion Matrix

The results of the confusion matrix evaluation are presented in Fig. 5. As shown in Fig. 5, the
confusion matrix indicates that the proposed model achieves strong classification performance across eight
classes, with most samples correctly classified along the main diagonal. Class 3 exhibits the highest
accuracy, with 107 true positives and minimal misclassification, followed by Classes 1, 4, and 7, which also
show high correct prediction rates. Misclassifications are mainly observed in classes with limited samples,
particularly Classes 2 and 6, suggesting that class imbalance affects predictive reliability for
underrepresented classes. Minor confusion between certain class pairs indicates partial feature overlap.
Overall, the confusion matrix confirms that the model effectively discriminates among the majority of classes,
consistent with the reported accuracy and F1-score results.

As shown in Table 8, the proposed model achieves an overall accuracy of 0.96 on 203 samples,
indicating strong classification performance. Classes with sufficient data, particularly Class 3, demonstrate
robust results with precision and recall values of 0.98, while Classes 4 and 7 also exhibit high F1-scores of
0.96 and 0.93, respectively. Perfect scores observed in Classes 0 and 5 should be interpreted cautiously
due to their limited sample sizes. In contrast, reduced recall values in Classes 2 and 6 highlight the impact
of class imbalance. The macro-average F1-score of 0.89 reflects inter-class performance variability,
whereas the weighted F1-score of 0.96 confirms reliable overall model performance.

4.5, Overall Performance Comparison

To evaluate the broader applicability of the proposed framework and to contextualize its performance
within existing research, a comparative assessment is conducted using representative results reported in
previous studies. This comparison highlights differences in feature extraction techniques, classification
models, the number of seismic event categories, and achieved classification accuracy.

As summarized in Table 9, earlier studies have reported competitive performance using different
combinations of features and classifiers for seismic signal classification. Tempola, Muhammad, & Khairan
(2018) employed time-domain features with a KNN classifier to distinguish four classes, achieving an
accuracy of 0.89. Lara-Cueva, Benitez, Paillacho, Villalva, & Rojo-Alvarez (2018) extended the classification
task to five event types by incorporating spectral features and SVM, resulting in improved accuracy. A
further increase in classification performance was reported by Tang, Zhang, & Wen (2020), who utilized
frequency-based features and SVM to classify six seismic event categories.

In contrast, the proposed approach attains the highest accuracy of 0.9605 while simultaneously
handling a more challenging classification scenario involving eight volcanic seismic event classes. This
improvement reflects the combined effect of autocorrelation-based feature representation, which
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emphasizes inherent temporal structures in seismic signals, and Z-score normalization, which enhances
model stability by reducing feature scale disparities. Moreover, the polynomial SVM kernel with degree d =
2 provides an effective balance between model complexity and generalization capability, enabling accurate
discrimination of non-linear seismic patterns.

It should be noted that this study does not perform a direct quantitative comparison with a manual
seismic classification system. Instead, manual analysis is treated as a conceptual baseline representing
expert-driven interpretation, which is commonly characterized by subjectivity, high time consumption, and
limited scalability under large data volumes and noisy conditions. Therefore, the evaluation in this study
focuses on assessing whether the proposed automated framework can deliver stable, reproducible, and
high-accuracy classification results that address the operational limitations inherent in manual seismic
analysis, rather than benchmarking numerical performance against human interpretation.

Overall, the comparative results indicate that the proposed framework not only achieves higher
classification accuracy than previously reported automated methods but also demonstrates improved
robustness and generalizability as the number of target classes increases. These findings confirm the
effectiveness of the proposed method for complex multi-class volcanic seismic signal classification tasks.
4.6. Discussion

Overall, the experimental findings demonstrate that the proposed framework is capable of capturing
salient patterns in seismic signals by integrating autocorrelation-based characterization with SVM
classification. Variations in performance across different SVM kernels can be attributed to differences in
feature space non-linearity and the stabilizing effect of data normalization. In this context, Z-score
normalization substantially enhances classification robustness by reducing feature scale disparities and
facilitating more effective kernel optimization. Classification errors are predominantly observed in classes
with limited data availability and overlapping signal characteristics, a well-known issue in seismic event
classification. Nevertheless, the model maintains reliable performance for dominant classes, as evidenced
by the strong diagonal dominance in the confusion matrix and consistently high weighted evaluation metrics.
These results establish a clear foundation for further discussion regarding model limitations and potential
areas for improvement, which are addressed in the following chapter. Despite the promising results, this
study has several limitations that should be acknowledged. One important limitation is class imbalance,
which arises from the limited availability of seismic records for certain event types. Although the dataset
contains sufficient samples for dominant classes, some classes are underrepresented, leading to uneven
class distributions. This imbalance contributes to higher misclassification rates in minority classes,
particularly when signal characteristics overlap. Therefore, the observed classification errors are influenced
not only by limited data availability but also by the resulting class imbalance, which remains a fundamental
challenge in seismic event classification.

5. Conclusions

Based on the findings of this study, the integration of autocorrelation-based signal characterization
with Support Vector Machine (SVM) classification is shown to be effective for analyzing volcanic seismic
signals. The experiments were conducted using volcanic seismic recordings obtained from authorized
monitoring stations, ensuring that the conclusions are supported by real observational data.

Among the evaluated kernel functions, the polynomial SVM kernel with a degree of two delivers the
most reliable classification performance, demonstrating its strong capability in capturing non-linear patterns
inherent in seismic data. This is supported by its highest achieved classification accuracy of 0.9605, which
exceeds that of the linear (0.9310) and radial basis function (RBF) (0.8669) kernels.

Furthermore, the results confirm that Z-score normalization plays a critical role in enhancing model
stability and classification reliability by standardizing feature distributions. When normalization is applied, the
classification accuracy of the polynomial kernel increases substantially from 0.5369 to 0.9605, while the
linear kernel improves from 0.8325 to 0.9310, highlighting the importance of feature scaling in SVM-based
seismic classification.

Despite the strong overall performance, reduced classification reliability is observed for several
seismic classes with limited training samples. This limitation reflects the impact of class imbalance caused
by restricted data availability in minority classes rather than shortcomings of the proposed framework itself,
as indicated by recall values as low as 0.50 in these categories. Accordingly, future work will focus on data
imbalance handling strategies, including undersampling, oversampling, and synthetic data generation
techniques such as the Synthetic Minority Over-sampling Technique (SMOTE), to further enhance the
robustness and generalization capability of the proposed approach in operational volcanic seismic
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monitoring systems.
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