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Abstract

Alzheimer’s disease is a progressive neurodegenerative disorder that leads to cognitive decline and
requires early and accurate diagnosis to slow disease progression. Magnetic resonance imaging (MRI)
is widely used to detect structural brain changes associated with Alzheimer’s disease; however, manual
interpretation of MRI scans is time-consuming and subject to observer variability. Deep learning
approaches have shown strong potential in automated MRI analysis, but their black-box nature limits
clinical trust and interpretability. This study proposes a transfer learning—based deep learning framework
for Alzheimer’s disease classification, complemented by explainable artificial intelligence (XAl) techniques
to analyze model predictions. A pretrained VGG16 model is employed to classify MRI images into four
cognitive impairment categories: no impairment, very mild impairment, mild impairment, and moderate
impairment. To enhance transparency, Grad-CAM, Saliency Maps, and Guided Grad-CAM are applied
to visualize brain regions that contribute most to model predictions. Experimental results demonstrate
that the proposed approach achieves 95.41% accuracy, indicating that a well-balanced network
architecture combined with integrated explainability techniques leads to effective, interpretable
classification. The visual explanations highlight clinically meaningful brain regions that align with known
Alzheimer’s disease—related structural changes. These findings suggest that combining deep transfer
learning with explainable artificial intelligence can provide accurate and interpretable decision support for
Alzheimer’s disease diagnosis. This study is limited by the use of a single publicly available dataset and
two-dimensional MR slices, which may affect generalizability across clinical environments.

Keywords: Alzheimer’s disease, clinical decision support, deep learning, explainable artificial
intelligence, magnetic resonance imaging, transfer learning.

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the leading cause of
dementia worldwide, characterized by gradual cognitive decline, memory impairment, and functional
deterioration. The increasing aging population has led to a rapid rise in AD prevalence, creating substantial
clinical, social, and economic challenges for healthcare systems. Early and accurate diagnosis is crucial to
enable timely intervention and slow disease progression; however, detecting AD at early stages remains
difficult due to subtle brain changes and overlapping symptoms with normal aging (Jack, et al., 2018;
Livingston, et al., 2020).

Neuroimaging plays a central role in Alzheimer’s disease diagnosis and progression assessment.
Magnetic Resonance Imaging (MRI) is widely used to identify structural brain abnormalities associated with
AD, such as hippocampal atrophy and cortical thinning. At the same time, positron emission tomography
(PET) provides complementary metabolic information. Despite their diagnostic value, interpretation of
neuroimaging data largely relies on expert visual assessment, which is time-consuming and subject to inter-
observer variability. These limitations motivate the development of automated and objective image analysis
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approaches to support clinical decision-making (Jack, et al., 2018; Rathore, Habes, Iftikhar, Shacklett, &
Davatzikos, 2017).

Recent advances in artificial intelligence, particularly deep learning, have significantly improved
automated diagnosis of Alzheimer’s disease from neuroimaging data (Ali, et al., 2024; Basaia, et al., 2019;
Bron, et al., 2021; EI-Assy, Amer, Ibrahim, & Mohamed, 2024; Islam & Zhang, 2018; Komal, Dhavakumar,
Rahul, Jaswanth, & Preeth, 2025; Sampath & Baskar, 2024; Sheikh, Marouf, Rokne, & Alhajj, 2025; Sorour,
et al., 2024; Wen, et al., 2020). Convolutional Neural Networks (CNNs) are capable of learning hierarchical
feature representations directly from MRI and PET images, enabling effective stage classification and early
detection. Transfer learning using pretrained architectures such as VGG16 and VGG19 has become a
widely adopted strategy to address limited and imbalanced medical datasets, demonstrating strong
classification performance across multiple studies (Aderghal, Benois-Pineau, Afdel, & Gwenaélle, 2017; EI-
Assy, Amer, Ibrahim, & Mohamed, 2024; Islam & Zhang, 2018; Wen, et al., 2020).

Several recent studies have explored multimodal deep learning approaches that combine MRI and
PET imaging to improve diagnostic accuracy by leveraging both structural and functional brain information.
Although these multimodal frameworks often achieve high performance, they introduce increased
architectural complexity, higher computational costs, and reduced interpretability, which may limit their
practical applicability in real clinical settings (Odusami, MaskeliGnas, DamaseviCius, & Misra, 2023;
Odusami, Damasevicius, Milieskaite-Belousoviene, & Maskeliinas, 2024). In parallel, other studies have
investigated explainable convolutional neural networks and deep transfer learning paradigms for
Alzheimer’s diagnosis, emphasizing the importance of transparency and trust in medical artificial intelligence
systems (De Santi, Pasini, Santarelli, Genovesi, & Positano, 2023; Mahmud, et al., 2024).

Despite these advances, the widespread adoption of deep learning models in clinical practice
remains constrained by their black-box nature. Clinicians require not only accurate predictions but also clear
explanations that justify model decisions in a manner consistent with medical knowledge. Explainable
Artificial Intelligence (XAl) has emerged as a promising solution to this challenge by enabling human-
understandable explanations of model behaviour. Techniques such as Gradient-weighted Class Activation
Mapping (Grad-CAM), Saliency Maps, and Guided Grad-CAM have been increasingly applied to visualize
regions of interest that influence deep learning predictions in neuroimaging tasks (AbdelAziz, Said,
AbdelHafeez, & Ali, 2024; Samek, Wiegand, & Mdller, 2017; Selvaraju, et al., 2020; Sheikh, Marouf, Rokne,
& Alhajj, 2025; Shuvo, Refat, Preotee, & Muhammad, 2025; Tjoa & Guan, 2021).

Although prior studies have demonstrated the potential of XAl in Alzheimer’s disease diagnosis,
several research gaps remain. Many existing works apply explainability techniques only as supplementary
visualization tools without systematically evaluating their consistency across different disease stages.
Furthermore, comparative analysis of interpretability across multiple deep learning architectures remains
limited, and the balance between classification performance and explainability is often insufficiently
addressed (Chattopadhyay, et al., 2024; Khosroshahi, et al., 2025).

To address these gaps, this study proposes a transfer learning—based deep learning framework
complemented by explainable artificial intelligence techniques. The proposed approach employs a
pretrained VGG16 model as the primary classifier and integrates multiple XAl techniques, including Grad-
CAM, Saliency Maps, and Guided Grad-CAM, to provide comprehensive visual explanations of model
predictions. Unlike prior studies that emphasize architectural complexity or multimodal fusion, this research
focuses on achieving an effective balance between classification accuracy, computational efficiency, and
interpretability using a well-established transfer learning model.

The primary objective of this study is to evaluate the interpretability of transfer learning—based deep
learning models for Alzheimer’s disease severity classification using MRI images. Specifically, this research
aims to:

e Assess the classification performance of pretrained convolutional neural networks for distinguishing
Alzheimer’s disease severity levels from MRI data;
e Systematically analyse the consistency and reliability of visual explanations generated by multiple
explainable artificial intelligence techniques across different disease stages;
e Investigate the relationship between model predictive performance and explainability, examining
whether higher accuracy corresponds to more clinically meaningful visual explanations.
By focusing on explainability evaluation rather than architectural novelty, this study seeks to provide insights
into the practical use of interpretable deep learning models in clinical decision support.

2. Methods
2.1. Dataset
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Fig. 1. Sample brain MRl images representing different severity levels of Alzheimer’s disease: (a) no impairment, (b)
very mild impairment, (c) mild impairment, and (d) moderate impairment.
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Fig. 2. Overview of the proposed deep learning framework for Alzheimer’s disease classification and explainability.

-

This study utilizes a secondary dataset of brain Magnetic Resonance Imaging (MRI) scans obtained
from a publicly available repository. The dataset consists of 5,760 MRI images categorized into four levels
of cognitive impairment: no impairment, very mild impairment, mild impairment, and moderate impairment.
The dataset exhibits class imbalance, with more samples in the no impairment and very mild impairment
categories than in the mild and moderate impairment classes. This characteristic reflects real-world clinical
conditions and presents an additional challenge for automated classification.

Using a publicly available dataset ensures reproducibility and facilitates fair comparison with previous
studies. Since the dataset does not contain identifiable patient information, ethical approval was not
required.

Fig. 1 presents representative MRI images from the dataset across four Alzheimer’s disease severity
categories, namely no impairment, very mild impairment, mild impairment, and moderate impairment. The
figure illustrates the visual characteristics of each class and highlights the subtle structural differences
between adjacent stages, particularly in the early phases of the disease. These similarities emphasize the
challenge of automated classification and motivate the use of deep learning approaches to extract
discriminative features beyond visual inspection.

2.2. Methodological Workflow

Fig. 2 illustrates the overall workflow of the proposed framework, starting from MRI data acquisition
and preprocessing, followed by image segmentation and deep learning—based classification. The
preprocessing stage includes image resizing, normalization, noise reduction, and data augmentation to
improve model robustness. Segmentation is performed using Canny edge detection, Otsu thresholding, and
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region-of-interest masking to emphasize relevant brain structures. The processed images are then fed into
transfer-learning—based convolutional neural networks, including VGG16 and VGG19, with ensemble
strategies used to combine model predictions. Finally, explainable artificial intelligence techniques, namely
Grad-CAM, Saliency Maps, and Guided Grad-CAM, are used to generate visual explanations that highlight
regions influencing the classification results.

The intended users of the proposed system are clinicians and medical researchers involved in
Alzheimer’s disease assessment. The system is designed as a decision-support tool, providing visual
explanations to assist human interpretation of MRI-based predictions rather than performing autonomous
diagnosis. The outputs of the system are intended to support clinical reasoning by highlighting image regions
relevant to disease severity, while final diagnostic decisions remain under full human authority.

2.2.1. Preprocessing

Before model training, all MRI images undergo preprocessing to ensure consistency and improve
data quality. Each image is resized to 224x224 pixels to match the input requirements of the pretrained
convolutional neural networks. Pixel intensity values are normalized to stabilize the training process and
accelerate convergence.

Noise reduction is applied to suppress irrelevant artifacts while preserving essential anatomical
structures. In addition, data augmentation techniques, including rotation, horizontal flipping, zooming, and
shifting, are employed to increase data diversity and mitigate the effects of class imbalance. These
strategies help reduce overfitting and improve model generalization.

2.2.2. Image segmentation

To emphasize relevant brain structures and reduce background influence, an image segmentation
step is applied before classification. Edge detection using the Canny algorithm is performed to highlight
structural boundaries, followed by Otsu thresholding to separate foreground and background regions. A
region-of-interest masking technique is then applied to focus the analysis on the brain region. This
segmentation process aims to improve feature extraction by directing the model’s attention to anatomically
meaningful regions.

2.2.3. Model Training and Ensemble Strategy

The primary classification model employed in this study is based on the VGG16 architecture, which
is widely recognized for its effectiveness in hierarchical feature extraction. Transfer learning is applied by
initializing the model with pretrained weights obtained from a large-scale image dataset. The final fully
connected layers are modified to accommodate the four-class Alzheimer’s disease severity classification
task.

During training, the convolutional base of the model is partially frozen to preserve learned low-level
features, while higher-level layers are fine-tuned to adapt to MRI-specific characteristics. For comparative
analysis, additional pretrained architectures are trained under the same experimental settings, and
ensemble strategies are applied to combine predictions from selected models.

The dataset is split into training and test sets at 80:20. Model training is performed using the Adam
optimizer with a fixed learning rate, and categorical cross-entropy is used as the loss function. Early stopping
is implemented to prevent overfitting by monitoring validation loss during training.

Model performance is evaluated using standard classification metrics, including accuracy, precision,
recall, and F1 score. Confusion matrices are also analyzed to examine misclassification patterns between
different severity levels.

To further evaluate model robustness, ensemble learning is used to combine predictions from
selected pretrained models. Two ensemble configurations are considered, namely Ensemble 1, which
combines EfficientNetBO and VGG16, and Ensemble 2, which combines EfficientNetBO and VGG19. The
ensemble predictions are obtained using a soft voting scheme by averaging the class probability outputs of
the individual models. This approach aims to assess whether combining complementary feature
representations can improve classification stability compared to single-model architectures.

2.2.4. Explainable Artificial Intelligence Analysis

To enhance interpretability and clinical transparency, explainable artificial intelligence techniques are
integrated into the proposed framework. Gradient-weighted Class Activation Mapping (Grad-CAM) is
employed to generate class-specific activation maps that highlight spatial regions contributing to model
predictions (Selvaraju, et al., 2020). Saliency Maps are used to visualize pixel-level sensitivity, indicating
how individual pixels influence the classification outcome (Samek, Wiegand, & Muller, 2017). In addition,
Guided Grad-CAM combines coarse localization with fine-grained gradient information to produce more
precise, detailed visual explanations. These techniques enable qualitative assessment of whether the model
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Table 1
Performance metrics.

Model Accuracy (%) Precision (%) Recall (%) F1 Score (%)
EfficientNetBO 75.83 80.00 76.00 75.00
VGG16 95.41 95.00 95.00 95.00
VGG19 95.02 95.00 95.00 95.00
Ensemble-1 94.78 95.00 95.00 95.00
Ensemble-2 94.34 95.00 94.00 94.00
EfficientNetBO 75.83 80.00 76.00 75.00
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Fig. 3. Confusion matrix for the EfficientNetBO model.
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Fig. 4. Confusion matrix for the VGG16 model.
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Fig. 5. Confusion matrix for the VGG19 model.
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Fig. 6. Confusion matrix for the Ensemble-1 model.

focuses on anatomically and clinically relevant brain regions, thereby supporting interpretability and trust in
the model’s predictions (Tjoa & Guan, 2021).

3. Results and Discussion

3.1. Classification Performance

The performance of the proposed deep learning models in classifying Alzheimer’s disease severity
was evaluated using accuracy, precision, recall, and F1 score, as summarized in Table 1. Among the models
being assessed, the VGG16 architecture achieved the highest accuracy of 95.41%, with balanced
precision, recall, and F1 scores across all classes. This result indicates that VGG16 provides the most
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Fig. 7. Confusion matrix for the Ensemble-2 model.
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reliable classification performance for MRI-based Alzheimer’s disease severity assessment.

Figs. 3-5 present the confusion matrices for the individual deep learning models: EfficientNetBO,
VGG16, and VGG19. As shown in Fig. 3, EfficientNetBO yields considerable misclassifications between
adjacent severity levels, particularly between no impairment and very mild impairment, as well as between
very mild and mild impairment. In contrast, VGG16 (Fig. 4) demonstrates more stable performance, with
most predictions concentrated along the diagonal. The VGG19 model (Fig. 5) also achieves strong
performance, although minor misclassifications remain in the early-stage categories.

The confusion matrices of the ensemble models are shown in Fig. 6 and Fig. 7. Ensemble-1,
combining EfficientNetBO and VGG16, shows improved stability compared to EfficientNetBO alone,
particularly in the moderate-impairment class. Ensemble-2, combining EfficientNetB0 and VGG19, achieves
similarly strong performance with minimal misclassification. However, neither ensemble model surpasses
the classification accuracy achieved by the single VGG16 model, confirming that VGG16 offers the most
effective balance between model complexity and performance for this dataset.

The learning behavior of each model is further analyzed using training and validation AUC and loss
curves shown in Figs. 8-17. The curves indicate that all models demonstrate progressive learning with
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decreasing loss values over epochs. Notably, the VGG16 model exhibits stable convergence with a
relatively small gap between training and validation curves, suggesting good generalization capability.
Although slight fluctuations are observed in the validation curves, early stopping effectively mitigates
overfitting across all evaluated models.
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Although minor fluctuations are observed in the validation curves, all reported evaluation results are
obtained from the held-out test set, which was not used during training, ensuring an unbiased performance
assessment.

3.2. Explainable Artificial Intelligence Visualization
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To enhance interpretability and assess whether the models base their predictions on clinically
meaningful brain regions, several explainable artificial intelligence techniques were applied. Fig. 18 presents
the Grad-CAM visualizations generated for each model. As shown in Fig. 18(b), the VGG 16 model produces
focused and coherent activation patterns in central brain regions commonly associated with Alzheimer’s
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Fig. 19. Saliency map results: (a) EfficientNetB0, (b) VGG16, (c) VGG19, (d) Ensemble-1, and (e) Ensemble-2.
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Fig. 20. Guided Grad-CAM results (no impairment): (a) EfficientNetBO0, (b) VGG16, (¢c) VGG19, (d) Ensemble-1, and
(e) Ensemble-2.
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Fig. 21. Guided Grad-CAM results (very mild impairment): (a) EfficientNetBO, (b) VGG16, (c) VGG19, (d) Ensemble-1,
and (e) Ensemble-2.
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Fig. 22. Guided Grad-CAM results (mild impairment): (a) EfficientNetBO0, (b) VGG16, (c) VGG19, (d) Ensemble-1, and
(e) Ensemble-2.

disease pathology. In contrast, Fig. 18(a) shows that EfficientNetB0 exhibits more diffuse and less consistent
activation, which aligns with its lower classification performance. The ensemble models in Fig. 18(d) and
Fig. 18(e) demonstrate broader activation patterns that reflect the combined characteristics of their
constituent models.

Pixel-level sensitivity analysis using Saliency Maps is illustrated in Fig. 19. The Saliency Map results
reveal that VGG16 and VGG19 generate more concentrated and structured sensitivity patterns compared
to EfficientNetBO0, indicating more transparent decision-making processes. The ensemble models show
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Fig. 23. Guided Grad-CAM results (moderate impairment): (a) EfficientNetBO, (b) VGG16, (c) VGG19, (d) Ensemble-
1, and (e) Ensemble-2.

moderate improvement in sensitivity localization, although their visual explanations remain less focused than
those produced by VGG16.

Further interpretability analysis is conducted using Guided Grad-CAM to examine model attention
across different Alzheimer’s disease severity levels. The Guided Grad-CAM visualizations for the no
impairment, very mild impairment, mild impairment, and moderate impairment classes are presented in Figs.
20-23, respectively. These figures show that activation intensity and spatial coverage increase with disease
severity, reflecting progressive structural brain changes captured by the model. The ensemble models
generally produce more substantial and more widespread activation; however, the VGG16 model
consistently highlights clinically relevant regions with clearer localization across all severity levels.

3.3. Discussion

The experimental results demonstrate that deep transfer learning is effective for MRI-based
classification of Alzheimer's disease severity, particularly with the VGG16 architecture. The superior
performance of VGG16, as evidenced by Table 1, Figs. 3-5, and the comparative training and validation
curves shown in Figs. 8-13, suggests that its balanced network depth enables effective extraction of
hierarchical features relevant to neurodegenerative changes without introducing excessive model
complexity. This finding is consistent with previous studies reporting strong performance of transfer
learning—based convolutional neural networks for Alzheimer’s disease classification using MRI data (Basaia,
et al., 2019; Islam & Zhang, 2018; Wen, et al., 2020).

Compared to existing studies that primarily emphasize improving classification accuracy through
deeper architectures or multimodal fusion of MRl and PET data, the present study focuses on the systematic
evaluation of explainability in transfer learning—based MRI classification of Alzheimer’s disease (Mahmud, et
al., 2024; Odusami, Maskelitinas, DamaseviCius, & Misra, 2023; Odusami, Damag&evicius, Milieskaite-
Belousoviené, & Maskelitinas, 2024; Sheikh, Marouf, Rokne, & Alhajj, 2025; Soladoye, Aderinto, Osho, &
Olawade, 2025). Previous works such as Odusami, Maskelilnas, DamaseviCius, & Misra (2023), Odusami,
Damasevicius, MilieSkaite-Belousoviene, & Maskelitnas (2024) and Mahmud, et al. (2024) report strong
performance using complex or multimodal models; however, these approaches often require increased
computational resources and treat explainability as a supplementary visualization rather than a primary
evaluation objective. In contrast, this study demonstrates that a single, well-optimized transfer learning
model can achieve competitive performance while maintaining computational efficiency and transparent
interpretability, highlighting the practical relevance of parsimonious and explainable models for clinical
decision-support applications.

The explainable artificial intelligence analyses presented in Figs. 18-23 provide essential insights into
model behavior. The highlighted activation regions produced by Grad-CAM, Saliency Maps, and Guided
Grad-CAM align with brain areas commonly associated with Alzheimer’s disease pathology, supporting the
clinical plausibility of the proposed framework. These findings align with prior research highlighting the role
of explainability in increasing trust and acceptance of deep learning models in medical diagnosis (Mahmud,
et al., 2024; Selvaraju, et al., 2020; Khosroshahi, et al., 2025).

Unlike many existing studies that primarily apply explainability techniques as post hoc visualization
tools, this work systematically evaluates interpretability across multiple disease severity levels and model
architectures. The results indicate that high classification accuracy does not necessarily guarantee reliable
interpretability, reinforcing the importance of jointly considering predictive performance and explanation
quality. By integrating transfer learning with multiple explainable artificial intelligence methods, the proposed
approach addresses a key limitation of black-box deep learning models. It strengthens their potential for
real-world clinical adoption.

3.4. Limitations and Future Work
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Despite the promising results, this study has several limitations that should be acknowledged. First,
the experiments were conducted using a secondary, publicly available MRI dataset that may not fully reflect
the heterogeneity of Alzheimer’s disease across different populations, imaging protocols, and clinical
settings. Consequently, the generalizability of the proposed model to data acquired from other institutions
or scanners may be limited.

Second, the dataset exhibits class imbalance, particularly in the moderate impairment category,
which may affect classification performance despite the use of data augmentation techniques. Although the
model demonstrates strong overall accuracy, imbalanced data distribution can still affect the robustness of
predictions for underrepresented classes.

Third, the proposed framework relies on two-dimensional MRI slices rather than complete three-
dimensional volumetric data. While this approach reduces computational complexity and enables efficient
training, it may not capture complete spatial information related to Alzheimer’s disease progression. In
addition, the explainable artificial intelligence analysis is primarily qualitative, and no direct clinical validation
was performed to assess the alignment between highlighted regions and expert annotations quantitatively.

The impact of preprocessing and segmentation was not quantitatively evaluated through ablation
experiments in this study. These steps were adopted based on established practices to improve input
consistency and model convergence; however, their isolated effects remain an critical direction for future
work. Future studies may incorporate systematic ablation experiments to assess the individual contribution
of preprocessing and segmentation steps across different datasets.

Future work will focus on addressing these limitations by incorporating larger and more diverse multi-
center datasets to improve model generalizability. The use of three-dimensional MRI volumes and
longitudinal imaging data will also be explored to capture more comprehensive structural information and
disease progression patterns. Furthermore, integrating quantitative evaluation of explainability, such as
comparison with expert-labeled regions of interest, may strengthen the clinical relevance of the proposed
framework. Finally, extending the approach to multimodal neuroimaging data, including PET or functional
MRI, could further enhance diagnostic accuracy and interpretability.

4. Conclusions

This study presents a transfer learning—based deep learning framework complemented by
explainable artificial intelligence (XAl) techniques for Alzheimer’s disease classification using brain MRI
images. By leveraging a pretrained VGG16 model, the proposed approach achieves high classification
accuracy while maintaining stable performance across different disease severity levels. The integration of
Grad-CAM, Saliency Maps, and Guided Grad-CAM provides transparent visual explanations that highlight
clinically relevant brain regions associated with Alzheimer’s disease pathology.

The results demonstrate that a single, well-optimized convolutional neural network, when combined
with explainability methods, can offer a favorable balance between predictive performance and
interpretability. These findings indicate that the proposed framework has potential as a reliable, interpretable
clinical decision-support tool for assisting in Alzheimer’s disease diagnosis. Future work will focus on
validation using larger and multi-center datasets, three-dimensional MRI representations, and quantitative
clinical evaluation to assess generalizability and clinical utility further.
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