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Abstract 
Alzheimer’s disease is a progressive neurodegenerative disorder that leads to cognitive decline and 

requires early and accurate diagnosis to slow disease progression. Magnetic resonance imaging (MRI) 

is widely used to detect structural brain changes associated with Alzheimer’s disease; however, manual 

interpretation of MRI scans is time-consuming and subject to observer variability. Deep learning 

approaches have shown strong potential in automated MRI analysis, but their black-box nature limits 

clinical trust and interpretability. This study proposes a transfer learning–based deep learning framework 

for Alzheimer’s disease classification, complemented by explainable artificial intelligence (XAI) techniques 

to analyze model predictions. A pretrained VGG16 model is employed to classify MRI images into four 

cognitive impairment categories: no impairment, very mild impairment, mild impairment, and moderate 

impairment. To enhance transparency, Grad-CAM, Saliency Maps, and Guided Grad-CAM are applied 

to visualize brain regions that contribute most to model predictions. Experimental results demonstrate 

that the proposed approach achieves 95.41% accuracy, indicating that a well-balanced network 

architecture combined with integrated explainability techniques leads to effective, interpretable 

classification. The visual explanations highlight clinically meaningful brain regions that align with known 

Alzheimer’s disease–related structural changes. These findings suggest that combining deep transfer 

learning with explainable artificial intelligence can provide accurate and interpretable decision support for 

Alzheimer’s disease diagnosis. This study is limited by the use of a single publicly available dataset and 

two-dimensional MRI slices, which may affect generalizability across clinical environments. 

Keywords: Alzheimer’s disease, clinical decision support, deep learning, explainable artificial 

intelligence, magnetic resonance imaging, transfer learning. 

1. Introduction 
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the leading cause of 

dementia worldwide, characterized by gradual cognitive decline, memory impairment, and functional 

deterioration. The increasing aging population has led to a rapid rise in AD prevalence, creating substantial 

clinical, social, and economic challenges for healthcare systems. Early and accurate diagnosis is crucial to 

enable timely intervention and slow disease progression; however, detecting AD at early stages remains 

difficult due to subtle brain changes and overlapping symptoms with normal aging (Jack, et al., 2018; 

Livingston, et al., 2020).  

Neuroimaging plays a central role in Alzheimer’s disease diagnosis and progression assessment. 

Magnetic Resonance Imaging (MRI) is widely used to identify structural brain abnormalities associated with 

AD, such as hippocampal atrophy and cortical thinning. At the same time, positron emission tomography 

(PET) provides complementary metabolic information. Despite their diagnostic value, interpretation of 

neuroimaging data largely relies on expert visual assessment, which is time-consuming and subject to inter-

observer variability. These limitations motivate the development of automated and objective image analysis 
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approaches to support clinical decision-making (Jack, et al., 2018; Rathore, Habes, Iftikhar, Shacklett, & 

Davatzikos, 2017).  

Recent advances in artificial intelligence, particularly deep learning, have significantly improved 

automated diagnosis of Alzheimer’s disease from neuroimaging data (Ali, et al., 2024; Basaia, et al., 2019; 

Bron, et al., 2021; El-Assy, Amer, Ibrahim, & Mohamed, 2024; Islam & Zhang, 2018; Komal, Dhavakumar, 

Rahul, Jaswanth, & Preeth, 2025; Sampath & Baskar, 2024; Sheikh, Marouf, Rokne, & Alhajj, 2025; Sorour, 

et al., 2024; Wen, et al., 2020). Convolutional Neural Networks (CNNs) are capable of learning hierarchical 

feature representations directly from MRI and PET images, enabling effective stage classification and early 

detection. Transfer learning using pretrained architectures such as VGG16 and VGG19 has become a 

widely adopted strategy to address limited and imbalanced medical datasets, demonstrating strong 

classification performance across multiple studies (Aderghal, Benois-Pineau, Afdel, & Gwenaëlle, 2017; El-

Assy, Amer, Ibrahim, & Mohamed, 2024; Islam & Zhang, 2018; Wen, et al., 2020).  

Several recent studies have explored multimodal deep learning approaches that combine MRI and 

PET imaging to improve diagnostic accuracy by leveraging both structural and functional brain information. 

Although these multimodal frameworks often achieve high performance, they introduce increased 

architectural complexity, higher computational costs, and reduced interpretability, which may limit their 

practical applicability in real clinical settings (Odusami, Maskeliūnas, Damaševičius, & Misra, 2023; 

Odusami, Damaševičius, Milieškaitė-Belousovienė, & Maskeliūnas, 2024). In parallel, other studies have 

investigated explainable convolutional neural networks and deep transfer learning paradigms for 

Alzheimer’s diagnosis, emphasizing the importance of transparency and trust in medical artificial intelligence 

systems (De Santi, Pasini, Santarelli, Genovesi, & Positano, 2023; Mahmud, et al., 2024).  

Despite these advances, the widespread adoption of deep learning models in clinical practice 

remains constrained by their black-box nature. Clinicians require not only accurate predictions but also clear 

explanations that justify model decisions in a manner consistent with medical knowledge. Explainable 

Artificial Intelligence (XAI) has emerged as a promising solution to this challenge by enabling human-

understandable explanations of model behaviour. Techniques such as Gradient-weighted Class Activation 

Mapping (Grad-CAM), Saliency Maps, and Guided Grad-CAM have been increasingly applied to visualize 

regions of interest that influence deep learning predictions in neuroimaging tasks (AbdelAziz, Said, 

AbdelHafeez, & Ali, 2024; Samek, Wiegand, & Müller, 2017; Selvaraju, et al., 2020; Sheikh, Marouf, Rokne, 

& Alhajj, 2025; Shuvo, Refat, Preotee, & Muhammad, 2025; Tjoa & Guan, 2021).  

Although prior studies have demonstrated the potential of XAI in Alzheimer’s disease diagnosis, 

several research gaps remain. Many existing works apply explainability techniques only as supplementary 

visualization tools without systematically evaluating their consistency across different disease stages. 

Furthermore, comparative analysis of interpretability across multiple deep learning architectures remains 

limited, and the balance between classification performance and explainability is often insufficiently 

addressed (Chattopadhyay, et al., 2024; Khosroshahi, et al., 2025). 

To address these gaps, this study proposes a transfer learning–based deep learning framework 

complemented by explainable artificial intelligence techniques. The proposed approach employs a 

pretrained VGG16 model as the primary classifier and integrates multiple XAI techniques, including Grad-

CAM, Saliency Maps, and Guided Grad-CAM, to provide comprehensive visual explanations of model 

predictions. Unlike prior studies that emphasize architectural complexity or multimodal fusion, this research 

focuses on achieving an effective balance between classification accuracy, computational efficiency, and 

interpretability using a well-established transfer learning model.  

The primary objective of this study is to evaluate the interpretability of transfer learning–based deep 

learning models for Alzheimer’s disease severity classification using MRI images. Specifically, this research 

aims to: 

• Assess the classification performance of pretrained convolutional neural networks for distinguishing 

Alzheimer’s disease severity levels from MRI data;  

• Systematically analyse the consistency and reliability of visual explanations generated by multiple 

explainable artificial intelligence techniques across different disease stages; 

• Investigate the relationship between model predictive performance and explainability, examining 

whether higher accuracy corresponds to more clinically meaningful visual explanations.  

By focusing on explainability evaluation rather than architectural novelty, this study seeks to provide insights 

into the practical use of interpretable deep learning models in clinical decision support. 
 

2. Methods 
2.1. Dataset 
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Fig. 1. Sample brain MRI images representing different severity levels of Alzheimer’s disease: (a) no impairment, (b) 

very mild impairment, (c) mild impairment, and (d) moderate impairment. 

 

 
Fig. 2.  Overview of the proposed deep learning framework for Alzheimer’s disease classification and explainability. 

 

This study utilizes a secondary dataset of brain Magnetic Resonance Imaging (MRI) scans obtained 

from a publicly available repository. The dataset consists of 5,760 MRI images categorized into four levels 

of cognitive impairment: no impairment, very mild impairment, mild impairment, and moderate impairment. 

The dataset exhibits class imbalance, with more samples in the no impairment and very mild impairment 

categories than in the mild and moderate impairment classes. This characteristic reflects real-world clinical 

conditions and presents an additional challenge for automated classification.  

Using a publicly available dataset ensures reproducibility and facilitates fair comparison with previous 

studies. Since the dataset does not contain identifiable patient information, ethical approval was not 

required.  

Fig. 1 presents representative MRI images from the dataset across four Alzheimer’s disease severity 

categories, namely no impairment, very mild impairment, mild impairment, and moderate impairment. The 

figure illustrates the visual characteristics of each class and highlights the subtle structural differences 

between adjacent stages, particularly in the early phases of the disease. These similarities emphasize the 

challenge of automated classification and motivate the use of deep learning approaches to extract 

discriminative features beyond visual inspection. 

2.2. Methodological Workflow 

Fig. 2 illustrates the overall workflow of the proposed framework, starting from MRI data acquisition 

and preprocessing, followed by image segmentation and deep learning–based classification. The 

preprocessing stage includes image resizing, normalization, noise reduction, and data augmentation to 

improve model robustness. Segmentation is performed using Canny edge detection, Otsu thresholding, and 
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region-of-interest masking to emphasize relevant brain structures. The processed images are then fed into 

transfer-learning–based convolutional neural networks, including VGG16 and VGG19, with ensemble 

strategies used to combine model predictions. Finally, explainable artificial intelligence techniques, namely 

Grad-CAM, Saliency Maps, and Guided Grad-CAM, are used to generate visual explanations that highlight 

regions influencing the classification results. 

The intended users of the proposed system are clinicians and medical researchers involved in 

Alzheimer’s disease assessment. The system is designed as a decision-support tool, providing visual 

explanations to assist human interpretation of MRI-based predictions rather than performing autonomous 

diagnosis. The outputs of the system are intended to support clinical reasoning by highlighting image regions 

relevant to disease severity, while final diagnostic decisions remain under full human authority. 

2.2.1. Preprocessing 

Before model training, all MRI images undergo preprocessing to ensure consistency and improve 

data quality. Each image is resized to 224×224 pixels to match the input requirements of the pretrained 

convolutional neural networks. Pixel intensity values are normalized to stabilize the training process and 

accelerate convergence.  

Noise reduction is applied to suppress irrelevant artifacts while preserving essential anatomical 

structures. In addition, data augmentation techniques, including rotation, horizontal flipping, zooming, and 

shifting, are employed to increase data diversity and mitigate the effects of class imbalance. These 

strategies help reduce overfitting and improve model generalization. 

2.2.2. Image segmentation 

To emphasize relevant brain structures and reduce background influence, an image segmentation 

step is applied before classification. Edge detection using the Canny algorithm is performed to highlight 

structural boundaries, followed by Otsu thresholding to separate foreground and background regions. A 

region-of-interest masking technique is then applied to focus the analysis on the brain region. This 

segmentation process aims to improve feature extraction by directing the model’s attention to anatomically 

meaningful regions. 

2.2.3. Model Training and Ensemble Strategy 

The primary classification model employed in this study is based on the VGG16 architecture, which 

is widely recognized for its effectiveness in hierarchical feature extraction. Transfer learning is applied by 

initializing the model with pretrained weights obtained from a large-scale image dataset. The final fully 

connected layers are modified to accommodate the four-class Alzheimer’s disease severity classification 

task.  

During training, the convolutional base of the model is partially frozen to preserve learned low-level 

features, while higher-level layers are fine-tuned to adapt to MRI-specific characteristics. For comparative 

analysis, additional pretrained architectures are trained under the same experimental settings, and 

ensemble strategies are applied to combine predictions from selected models.  

The dataset is split into training and test sets at 80:20. Model training is performed using the Adam 

optimizer with a fixed learning rate, and categorical cross-entropy is used as the loss function. Early stopping 

is implemented to prevent overfitting by monitoring validation loss during training.  

Model performance is evaluated using standard classification metrics, including accuracy, precision, 

recall, and F1 score. Confusion matrices are also analyzed to examine misclassification patterns between 

different severity levels.  

To further evaluate model robustness, ensemble learning is used to combine predictions from 

selected pretrained models. Two ensemble configurations are considered, namely Ensemble 1, which 

combines EfficientNetB0 and VGG16, and Ensemble 2, which combines EfficientNetB0 and VGG19. The 

ensemble predictions are obtained using a soft voting scheme by averaging the class probability outputs of 

the individual models. This approach aims to assess whether combining complementary feature 

representations can improve classification stability compared to single-model architectures. 

2.2.4. Explainable Artificial Intelligence Analysis 

To enhance interpretability and clinical transparency, explainable artificial intelligence techniques are 

integrated into the proposed framework. Gradient-weighted Class Activation Mapping (Grad-CAM) is 

employed to generate class-specific activation maps that highlight spatial regions contributing to model 

predictions (Selvaraju, et al., 2020). Saliency Maps are used to visualize pixel-level sensitivity, indicating 

how individual pixels influence the classification outcome (Samek, Wiegand, & Müller, 2017). In addition, 

Guided Grad-CAM combines coarse localization with fine-grained gradient information to produce more 

precise, detailed visual explanations. These techniques enable qualitative assessment of whether the model  
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Table 1 

Performance metrics. 

   

Model Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

EfficientNetB0 75.83 80.00 76.00 75.00 

VGG16 95.41 95.00 95.00 95.00 

VGG19 95.02 95.00 95.00 95.00 

Ensemble-1 94.78 95.00 95.00 95.00 

Ensemble-2 94.34 95.00 94.00 94.00 

EfficientNetB0 75.83 80.00 76.00 75.00 

 

 
Fig. 3. Confusion matrix for the EfficientNetB0 model. 

 

 
Fig. 4. Confusion matrix for the VGG16 model. 
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Fig. 5. Confusion matrix for the VGG19 model. 

 

 
Fig. 6. Confusion matrix for the Ensemble-1 model. 

 

focuses on anatomically and clinically relevant brain regions, thereby supporting interpretability and trust in 

the model’s predictions (Tjoa & Guan, 2021).  
 

3. Results and Discussion 
3.1. Classification Performance 

The performance of the proposed deep learning models in classifying  Alzheimer’s disease severity 

was evaluated using accuracy, precision, recall, and F1 score, as summarized in Table 1. Among the models 

being  assessed,  the  VGG16  architecture  achieved  the  highest  accuracy  of  95.41%,  with  balanced 

precision, recall, and F1 scores across all classes.  This  result  indicates  that  VGG16  provides  the  most  



 

 

 

 

Explainable Artificial …                                                  Journal of Information Technology and Cyber Security 4(1) January 2026: 1-15 

 
 

 

 
 

 

 

 

 

 
Fig. 7. Confusion matrix for the Ensemble-2 model. 

 

 
Fig. 8. AUC curve of EfficientNetB0. 

 

reliable classification performance for MRI-based Alzheimer’s disease severity assessment.  

Figs. 3–5 present the confusion matrices for the individual deep learning models: EfficientNetB0, 

VGG16, and VGG19. As shown in Fig. 3, EfficientNetB0 yields considerable misclassifications between 

adjacent severity levels, particularly between no impairment and very mild impairment, as well as between 

very mild and mild impairment. In contrast, VGG16  (Fig. 4)  demonstrates more stable  performance,  with  

most  predictions  concentrated  along  the  diagonal.  The  VGG19  model  (Fig. 5)  also  achieves  strong 

performance, although minor misclassifications remain in the early-stage categories.  

The confusion matrices of the ensemble models are shown in Fig. 6 and Fig. 7. Ensemble-1, 

combining EfficientNetB0 and VGG16, shows improved stability compared to EfficientNetB0 alone, 

particularly in the moderate-impairment class. Ensemble-2, combining EfficientNetB0 and VGG19, achieves 

similarly strong performance with minimal misclassification. However, neither ensemble model surpasses 

the classification accuracy achieved by the single VGG16 model, confirming that VGG16 offers the most 

effective balance between model complexity and performance for this dataset.  

The learning behavior of each model is further analyzed using training and validation AUC and loss 

curves shown in Figs. 8–17. The curves indicate  that  all  models  demonstrate  progressive  learning  with  
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Fig. 9. Loss curve of EfficientNetB0. 

 

 
Fig. 10. AUC curve of VGG16. 

 

 
Fig. 11. Loss curve of VGG16. 

 

decreasing loss values over epochs. Notably, the VGG16 model exhibits stable convergence with a 

relatively small gap between training and validation curves, suggesting good generalization capability. 

Although  slight  fluctuations  are  observed  in  the  validation  curves,  early stopping  effectively  mitigates 

overfitting across all evaluated models.  
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Fig. 12. AUC curve of VGG19. 

 

 
Fig. 13. Loss curve of VGG19. 

 

 
Fig. 14. AUC curve of Ensemble-1. 

 

 

Although minor fluctuations are observed in the validation curves, all reported evaluation results are 

obtained from the held-out test set, which was not used during training, ensuring an unbiased performance 

assessment. 

3.2. Explainable Artificial Intelligence Visualization 
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Fig. 15. Loss curve of Ensemble-1. 

 

 
Fig. 16. AUC curve of Ensemble-2. 

 

 
(b) 

Fig. 17. Loss curve of Ensemble-2. 

 

To enhance interpretability and assess whether the models base their predictions on clinically 

meaningful brain regions, several explainable artificial intelligence techniques were applied. Fig. 18 presents 

the Grad-CAM visualizations generated for each model. As shown in Fig. 18(b), the VGG16 model produces 

focused and coherent activation patterns in central brain regions  commonly  associated  with  Alzheimer’s  
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a b c d e 

Fig. 18. Grad-CAM results: (a) EfficientNetB0, (b) VGG16, (c) VGG19, (d) Ensemble-1, and (e) Ensemble-2. 

 

     

a b c d e 

Fig. 19. Saliency map results: (a) EfficientNetB0, (b) VGG16, (c) VGG19, (d) Ensemble-1, and (e) Ensemble-2. 

 

     

a b c d e 

Fig. 20. Guided Grad-CAM results (no impairment): (a) EfficientNetB0, (b) VGG16, (c) VGG19, (d) Ensemble-1, and 

(e) Ensemble-2. 

 

     

a b c d e 

Fig. 21. Guided Grad-CAM results (very mild impairment): (a) EfficientNetB0, (b) VGG16, (c) VGG19, (d) Ensemble-1, 

and (e) Ensemble-2. 

 

     

a b c d e 

Fig. 22. Guided Grad-CAM results (mild impairment): (a) EfficientNetB0, (b) VGG16, (c) VGG19, (d) Ensemble-1, and 

(e) Ensemble-2. 
 

disease pathology. In contrast, Fig. 18(a) shows that EfficientNetB0 exhibits more diffuse and less consistent 

activation, which aligns with its lower classification performance. The ensemble models in Fig. 18(d) and 

Fig.  18(e)  demonstrate  broader  activation  patterns  that  reflect  the  combined  characteristics  of  their 

constituent models. 

Pixel-level sensitivity analysis using Saliency Maps is illustrated in Fig. 19. The Saliency Map results 

reveal that VGG16 and VGG19 generate more concentrated and structured sensitivity patterns compared 

to EfficientNetB0, indicating more  transparent  decision-making  processes. The  ensemble  models  show  
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a b c d e 

Fig. 23. Guided Grad-CAM results (moderate impairment): (a) EfficientNetB0, (b) VGG16, (c) VGG19, (d) Ensemble-

1, and (e) Ensemble-2. 

 

 

moderate improvement in sensitivity localization, although their visual explanations remain less focused than 

those produced by VGG16. 

Further interpretability analysis is conducted using Guided Grad-CAM  to  examine  model  attention 

across different Alzheimer’s disease severity levels. The Guided Grad-CAM visualizations for the no 

impairment, very mild impairment, mild impairment, and moderate impairment classes are presented in Figs. 

20–23, respectively. These figures show that activation intensity and spatial coverage increase with disease 

severity, reflecting progressive structural brain changes captured by the model. The ensemble models 

generally produce more substantial and more widespread activation; however, the VGG16 model 

consistently highlights clinically relevant regions with clearer localization across all severity levels. 

3.3. Discussion 

The experimental results demonstrate that deep transfer learning is effective for MRI-based 

classification of Alzheimer’s disease severity, particularly with the VGG16 architecture. The superior 

performance of VGG16, as evidenced by Table 1, Figs. 3–5, and the comparative training and validation 

curves shown in Figs. 8–13, suggests that its balanced network depth enables effective extraction of 

hierarchical features relevant to neurodegenerative changes without introducing excessive model 

complexity. This finding is consistent with previous studies reporting strong performance of transfer 

learning–based convolutional neural networks for Alzheimer’s disease classification using MRI data (Basaia, 

et al., 2019; Islam & Zhang, 2018; Wen, et al., 2020).  

Compared to existing studies that primarily emphasize improving classification accuracy through 

deeper architectures or multimodal fusion of MRI and PET data, the present study focuses on the systematic 

evaluation of explainability in transfer learning–based MRI classification of Alzheimer’s disease (Mahmud, et 

al., 2024; Odusami, Maskeliūnas, Damaševičius, & Misra, 2023; Odusami, Damaševičius, Milieškaitė-

Belousovienė, & Maskeliūnas, 2024; Sheikh, Marouf, Rokne, & Alhajj, 2025; Soladoye, Aderinto, Osho, & 

Olawade, 2025). Previous works such as Odusami, Maskeliūnas, Damaševičius, & Misra (2023), Odusami, 

Damaševičius, Milieškaitė-Belousovienė, & Maskeliūnas (2024) and Mahmud, et al. (2024) report strong 

performance using complex or multimodal models; however, these approaches often require increased 

computational resources and treat explainability as a supplementary visualization rather than a primary 

evaluation objective. In contrast, this study demonstrates that a single, well-optimized transfer learning 

model can achieve competitive performance while maintaining computational efficiency and transparent 

interpretability, highlighting the practical relevance of parsimonious and explainable models for clinical 

decision-support applications.  

The explainable artificial intelligence analyses presented in Figs. 18–23 provide essential insights into 

model behavior. The highlighted activation regions produced by Grad-CAM, Saliency Maps, and Guided 

Grad-CAM align with brain areas commonly associated with Alzheimer’s disease pathology, supporting the 

clinical plausibility of the proposed framework. These findings align with prior research highlighting the role 

of explainability in increasing trust and acceptance of deep learning models in medical diagnosis (Mahmud, 

et al., 2024; Selvaraju, et al., 2020; Khosroshahi, et al., 2025). 

Unlike many existing studies that primarily apply explainability techniques as post hoc visualization 

tools, this work systematically evaluates interpretability across multiple disease severity levels and model 

architectures. The results indicate that high classification accuracy does not necessarily guarantee reliable 

interpretability, reinforcing the importance of jointly considering predictive performance and explanation 

quality. By integrating transfer learning with multiple explainable artificial intelligence methods, the proposed 

approach addresses a key limitation of black-box deep learning models. It strengthens their potential for 

real-world clinical adoption.  

3.4. Limitations and Future Work 
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Despite the promising results, this study has several limitations that should be acknowledged.  First,  

the experiments were conducted using a secondary, publicly available MRI dataset that may not fully reflect 

the heterogeneity of Alzheimer’s disease across different populations, imaging protocols, and clinical 

settings. Consequently, the generalizability of the proposed model to data acquired from other institutions 

or scanners may be limited.  

Second, the dataset exhibits class imbalance, particularly in the moderate impairment category, 

which may affect classification performance despite the use of data augmentation techniques. Although the 

model demonstrates strong overall accuracy, imbalanced data distribution can still affect the robustness of 

predictions for underrepresented classes.  

Third, the proposed framework relies on two-dimensional MRI slices rather than complete three-

dimensional volumetric data. While this approach reduces computational complexity and enables efficient 

training, it may not capture complete spatial information related to Alzheimer’s disease progression. In 

addition, the explainable artificial intelligence analysis is primarily qualitative, and no direct clinical validation 

was performed to assess the alignment between highlighted regions and expert annotations quantitatively.  

The impact of preprocessing and segmentation was not quantitatively evaluated through ablation 

experiments in this study. These steps were adopted based on established practices to improve input 

consistency and model convergence; however, their isolated effects remain an critical direction for future 

work. Future studies may incorporate systematic ablation experiments to assess the individual contribution 

of preprocessing and segmentation steps across different datasets.  

Future work will focus on addressing these limitations by incorporating larger and more diverse multi-

center datasets to improve model generalizability. The use of three-dimensional MRI volumes and 

longitudinal imaging data will also be explored to capture more comprehensive structural information and 

disease progression patterns. Furthermore, integrating quantitative evaluation of explainability, such as 

comparison with expert-labeled regions of interest, may strengthen the clinical relevance of the proposed 

framework. Finally, extending the approach to multimodal neuroimaging data, including PET or functional 

MRI, could further enhance diagnostic accuracy and interpretability. 
 

4. Conclusions 
This study presents a transfer learning–based deep learning framework complemented by 

explainable artificial intelligence (XAI) techniques for Alzheimer’s disease classification using brain MRI 

images. By leveraging a pretrained VGG16 model, the proposed approach achieves high classification 

accuracy while maintaining stable performance across different disease severity levels. The integration of 

Grad-CAM, Saliency Maps, and Guided Grad-CAM provides transparent visual explanations that highlight 

clinically relevant brain regions associated with Alzheimer’s disease pathology.  

The results demonstrate that a single, well-optimized convolutional neural network, when combined 

with explainability methods, can offer a favorable balance between predictive performance and 

interpretability. These findings indicate that the proposed framework has potential as a reliable, interpretable 

clinical decision-support tool for assisting in Alzheimer’s disease diagnosis. Future work will focus on 

validation using larger and multi-center datasets, three-dimensional MRI representations, and quantitative 

clinical evaluation to assess generalizability and clinical utility further.   
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