A Comparison of Polynomial Regression and Support Vector Regression for Predicting the Consumer Price Index Based on Food Commodity Prices in East Java, Indonesia

Authors

  • Ayu Adelina Suyono Universitas KH. A. Wahab Hasbullah

DOI:

https://doi.org/10.30996/jitcs.12353

Keywords:

Consumer Price Index, food commodities, Pearson Correlation Coefficient, Polynomial Regression, Radial Basis Function, Support Vector Regression

Abstract

Food price fluctuations occur almost daily and directly affect purchasing power as well as the stability of regional and national economies. As one of the largest provinces in Indonesia, East Java, which significantly contributes to national GDP, has diverse economic structures and highly sensitive to price changes. Given this situation, government needs more accurate prediction methods to monitor Consumer Price Index (CPI) movement as a basis for establishing more appropriate economic strategy and policy. This study aims to compare the performance of Polynomial Regression (PR) and Support Vector Regression (SVR) in predicting CPI using food price data from SISKAPERBAPO for the 2014 - 2020 period, covering regencies and cities in East Java. To ensure the quality of the analysis, missing values were removed. A Pearson’s r correlation analysis was then conducted to assess the relationships between food prices and CPI. The model obtained was then evaluated using mean squared error (MSE), root mean square error (RMSE), Mean absolute percentage error (MAPE), and computation time. The results shows that third order PR achieved higher accuracy with MAPE of 0.3% (training) and 3.4% (testing), while SVR performed lower with MAPE of 5.9% (training) and 6.0% (testing). In addition, PR was more computationally efficient than SVR. These findings underscore PR as a more reliable method for predicting CPI using complex regional food data.

Downloads

Download data is not yet available.

Author Biography

Ayu Adelina Suyono, Universitas KH. A. Wahab Hasbullah

Department of Information Systems

References

Aida, N. R., & Nugroho, R. S. (2022, 3 1). Update Harga Pangan 1 Maret 2022: Telur, Cabai, Minyak Goreng hingga Gula Pasir Naik. Retrieved 8 21, 2025, from Kompas.com: https://www.kompas.com/tren/read/2022/03/01/143000165/update-harga-pangan-1-maret-2022--telur-cabai-minyak-goreng-hingga-gula

Altair RapidMiner. (2025, 9 5). Polynomial Regression (AI Studio Core). Retrieved from Altair RapidMiner: https://docs.rapidminer.com/2024.0/studio/operators/modeling/predictive/functions/polynomial_regression.html

Ashoka, D. V., Rekha, P. M., & Sudha, P. R. (2024). Smart Power Management in Data Centers Using Machine-Learning Techniques. In R. Nagarajan, S. K. Narayanasamy, R. Thirunavukarasu, & P. Raj, Intelligent Systems and Sustainable Computational Models: Concepts, Architecture, and Practical Applications (pp. 1-13). New York, US: CRC Press. doi:https://doi.org/10.1201/9781003407959

Asmaradana, A. A., & Widodo, E. (2023). Penerapan Metode Peramalan Double Exponential Smoothing pada Indeks Harga Konsumen Kota Yogyakarta. Emerging Statistics and Data Science Journal (ESDS)., 1(1), 30-36. Retrieved 8 24, 2025, from https://journal.uii.ac.id/esds/article/download/27021/14715/84183

Badan Pusat Statistik. (2020). Indeks Harga Konsumen di 82 Kota di Indonesia (2012=100) 2019. Jakarta, Indonesia: Badan Pusat Statistik. Retrieved 9 5, 2025, from https://www.bps.go.id/id/publication/2020/04/09/91a62fdd238c2b440752e161/indeks-harga-konsumen-di-82-kota-di-indonesia--2012-100--2019.html

Badan Pusat Statistik. (2024). Diagram Timbang Indeks Harga Konsumen Hasil Survei Biaya Hidup 2022 (Vol. 8). Jakarta, Indonesia: Badan Pusat Statistik. Retrieved 9 5, 2025, from https://www.bps.go.id/id/publication/2024/02/05/f164320774fe896914f6fe1e/diagram-timbang-indeks-harga-konsumen-hasil-survei-biaya-hidup-2022.html

Bewick, V., Cheek, L., & Ball, J. (2003). Statistics review 7: Correlation and regression. Critical Care: Sepsis and Severe Infection, 7(6), 451–459. doi:https://doi.org/10.1186/cc2401

BPS Provinsi Jawa Timur. (2021). Indeks Harga Konsumen 8 Kota di Provinsi Jawa Timur 2020. Surabaya: BPS Provinsi Jawa Timur. Retrieved 8 24, 2025, from https://jatim.bps.go.id/id/publication/2021/04/23/4932c8cfa622e3c2618e04d8/indeks-harga-konsumen-8-kota-di-provinsi-jawa-timur-2020.html

BPS Provinsi Jawa Timur. (2024, 5 2). April 2024 inflasi Year on Year (y-on-y) Provinsi Jawa Timur sebesar 3,25 persen. Inflasi tertinggi terjadi di Sumenep sebesar 4,87 persen. Retrieved from Badan Pusat Statistik Provinsi Jawa Timur: https://jatim.bps.go.id/id/pressrelease/2024/05/02/1405/april-2024-inflasi-year-on-year--y-on-y--provinsi-jawa-timur-sebesar-3-25-persen--inflasi-tertinggi-terjadi-di-sumenep-sebesar-4-87-persen-.html

Budiastuti, I. A., Nugroho, S. M., & Hariadi, M. (2017). Predicting daily consumer price index using support vector regression method. 2017 15th International Conference on Quality in Research (QiR) : International Symposium on Electrical and Computer Engineering. Nusa Dua, Bali, Indonesia: IEEE. doi:https://doi.org/10.1109/QIR.2017.8168445

Bukaita, W., Celis, G. G., & Gurram, M. (2024). Training-Testing Data Ratio Selection for Accurate Time Series Forecasting: A COVID-19 Case Study. Proceedings of the Future Technologies Conference (FTC) 2024. 3, pp. 227–246. Springer. doi:https://doi.org/10.1007/978-3-031-73125-9_14

Chang, P.-C., Wang, Y.-W., & Liu, C.-H. (2007). The development of a weighted evolving fuzzy neural network for PCB sales forecasting. Expert Systems with Applications, 32(1), 86-96. doi:https://doi.org/10.1016/j.eswa.2005.11.021

Chen, J.-F., Do, Q. H., Nguyen, T. V., & Doan, T. T. (2018). Forecasting Monthly Electricity Demands by Wavelet Neuro-Fuzzy System Optimized by Heuristic Algorithms. Information, 9(3). doi:https://doi.org/10.3390/info9030051

Cybellium. (2023). Mastering Probability and Statistics: A Comprehensive Guide to Learn Probability and Statistics. Cybellium.

Delmo, J. A., Villarica, M. V., & Vinluan, A. A. (2022). Classification of Coffee Variety using Electronic Nose. 2022 IEEE 18th International Colloquium on Signal Processing & Applications (CSPA). 18, pp. 248-253. Selangor, Malaysia: IEEE. doi:https://doi.org/10.1109/CSPA55076.2022.9782056

Editya, A. S., Kurniati, N., Septianto, T., Lisdiyanto, A., & Al Haromainy, M. M. (2021). Effect of Kernel in Support Vector Regression Method to Predict Surabaya Consumer Price Index Trend. 2021 IEEE 5th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE). Purwokerto, Indonesia: IEEE. doi:https://doi.org/10.1109/ICITISEE53823.2021.9655891

Geetha, A. V., Mala, T., Priyanka, D., & Uma, E. (2024). Multimodal Emotion Recognition with Deep Learning: Advancements, challenges, and future directions. Information Fusion, 105. doi:https://doi.org/10.1016/j.inffus.2023.102218

Gogtay, N. J., & Thatte, U. (2017). Principles of Correlation Analysis. Journal of The Association of Physicians of India, 65(3), 78-81. Retrieved from https://www.kem.edu/wp-content/uploads/2012/06/9-Principles_of_correlation-1.pdf

Haoyuan, S., Yizhong, M., Chenglong, L., Jian, Z., & Lijun, L. (2023). Hierarchical Bayesian support vector regression with model parameter calibration for reliability modeling and prediction. Reliability Engineering & System Safety, 229. doi:https://doi.org/10.1016/j.ress.2022.108842

Hinkle, D. E., Wiersma, W., & Jurs, S. G. (2003). Applied statistics for the behavioral sciences. Houghton Mifflin. Retrieved 9 6, 2025, from https://library.wur.nl/WebQuery/titel/1944963

Hsia, J.-Y., & Lin, C.-J. (2020). Parameter Selection for Linear Support Vector Regression. IEEE Transactions on Neural Networks and Learning Systems, 31(12), 5639-5644. doi:https://doi.org/10.1109/TNNLS.2020.2967637

Joseph, V. R. (2022). Optimal ratio for data splitting. Statistical Analysis and Data Mining: An ASA Data Science Journal, 15(4), 531-538. doi:https://doi.org/10.1002/sam.11583

Kumar, S., & Chong, I. (2018). Correlation Analysis to Identify the Effective Data in Machine Learning: Prediction of Depressive Disorder and Emotion States. International Journal of Environmental Research and Public Health, 15(12), 2907. doi:https://doi.org/10.3390/ijerph15122907

Ladjal, B., Nadour, M., Bechouat, M., Hadroug, N., Sedraoui, M., Rabehi, A., . . . Agajie, T. F. (2025). Hybrid deep learning CNN-LSTM model for forecasting direct normal irradiance: a study on solar potential in Ghardaia, Algeria. Scientific Reports, 15. doi:https://doi.org/10.1038/s41598-025-94239-z

Larasati, R., Susilorini, T. E., Surjowardojo, P., & Wahyuni, R. D. (2024). Correlation of Linear Body Size With Body Condition Score and Body Weight of Participated Cow Used in the Progeny Test in East Java. Animal Production : Indonesian Journal of Animal Production, 26(2), 70-81. doi:https://doi.org/10.20884/1.jap.2024.26.2.298

Marsh, L. C., & Cormier, D. R. (2001). Spline Regression Models. Sage.

Mata, D. A., & Milner, D. A. (2021). Statistical Methods in Experimental Pathology: A Review and Primer. The American Journal of Pathology, 191(5), 784-794. doi:https://doi.org/10.1016/j.ajpath.2021.02.009

Mukaka, M. M. (2012). A guide to appropriate use of Correlation coefficient in medical research. Malawi Medical Journal, 24(3), 69–71. Retrieved 9 6, 2025, from https://pmc.ncbi.nlm.nih.gov/articles/PMC3576830/

Myśliwiec, P., Szawara, P., Kubit, A., Zwolak, M., Ostrowski, R., Derazkola, H. A., & Jurczak, W. (2025). FSW Optimization: Prediction Using Polynomial Regression and Optimization with Hill-Climbing Method. Materials, 18(2), 448. doi:https://doi.org/10.3390/ma18020448

Ostertagová, E. (2012). Modelling using Polynomial Regression. Procedia Engineering, 48, 500-506. doi:https://doi.org/10.1016/j.proeng.2012.09.545

Park, K., Rothfeder, R., Petheram, S., Buaku, F., Ewing, R., & Greene, W. H. (2020). Linear Regression. In Basic Quantitative Research Methods for Urban Planners. Taylor & Francis.

Prakoso, B. H. (2019). Implementasi Support Vector Regression pada Prediksi Inflasi Indeks Harga Konsumen. Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer, 19(1), 155-162. doi:https://doi.org/10.30812/matrik.v19i1.511

Pramesti, S. A., Sadikin, U. A., Imro'ah, N., & Maulida, F. (2023). Prediksi Indeks Harga Konsumen Kota Pontianak Menggunakan Metode Double Exponential Smoothing dan Analysis Trend. Equator: Journal of Mathematical and Statistical Sciences, 2(2), 37-47. Retrieved 8 24, 2025, from https://jurnal.untan.ac.id/index.php/EMSS/article/view/73302

Putranto, B. P., Kholik, M. A., Nugroho, M. A., & Kriestanto, D. (2023). Polynomial Regression Method and Support Vector Machine Method for Predicting Disease Covid-19 in Indonesia. Journal of Intelligent Software System, 2(1), 18-23. doi:http://dx.doi.org/10.26798/jiss.v2i1.931

R, I., Sudarmin, S., & Rais, Z. (2022). Analisis Support Vector Regression (SVR) dengan Kernel Radial Basis Function (Rbf) untuk Memprediksi Laju Inflasi di Indonesia. Variansi: Journal of Statistics and Its Application on Teaching and Research, 4(1), 30-38. Retrieved 8 24, 2025, from https://jurnalvariansi.unm.ac.id/index.php/variansi/article/view/13

Rahmadi, D. R. (2018, 5 7). Lessons dari Jawa Timur. Retrieved 8 21, 2025, from Fakultas Ekonomi dan Bisnis Universitas Brawijaya: https://feb.ub.ac.id/lessons-dari-jawa-timur/

Rahmawati, R. (2020). Implementasi Algoritme Support Vector Regression dan Particle Swarm Optimization dalam Peramalan Penjualan. Bandung, Indonesia: Sekolah Tinggi Manajemen Informatika dan Komputer LIKMI. Retrieved 8 24, 2025, from https://library.likmi.ac.id/book/109

Rohmah, M. F., Ardiantoro, L., Putra, I. K., & Hartati, R. S. (2019). Meramal Indeks Harga Konsumen Kabupaten di Jawa Timur dengan Metode Support Vector Regression Data Mining. Seminar Nasional Aplikasi Teknologi Informasi (SNATi) (pp. C-30 – C-36). Yogyakarta, Indonesia: Universitas Islam Indonesia. Retrieved 8 24, 2025, from https://journal.uii.ac.id/Snati/article/view/13434

Salkind, N. J. (2010). Statistics for People who (think They) Hate Statistics: Excel 2007 Edition. SAGE Publications.

Sari, D. N., Sasmito, B., & Hadi, F. (2023). Estimasi Produktivitas Kopi Menggunakan Citra SPOT-7 Dengan Transformasi Indeks Vegetasi. Jurnal Geodesi Undip (JGU), 12(1), 20-29. Retrieved 8 24, 2025, from https://ejournal3.undip.ac.id/index.php/geodesi/article/view/36910

Sari, L. P., Muslihah, M., Mutohari, R., & Sari, R. N. (2025). Dampak Krisis Keuangan Global Terhadap Pertumbuhan Ekonomi di Indonesia. Moneter: Jurnal Ekonomi dan Keuangan, 3(1), 90-103. doi:https://doi.org/10.61132/moneter.v3i1.1094

Singh, U., Singh, S., Gupta, S., Alotaibi, M. A., & Malik, H. (2025). Forecasting rooftop photovoltaic solar power using machine learning techniques. Energy Reports, 13, 3616-3630. doi:https://doi.org/10.1016/j.egyr.2025.03.005

Soyer, P. (2017). Misuse of semantics and basic statistical terms in original articles. Diagnostic and Interventional Imaging, 98(12), 825-826. doi:https://doi.org/10.1016/j.diii.2017.11.006

Vanitha, G., & Kasthuri, M. (2024). Basic Guide for Machine Learning Algorithms and Models. Madurai, India: SK Research Group of Companies.

Wisniewski, S. J., & Brannan, G. D. (2024). Correlation (Coefficient, Partial, and Spearman Rank) and Regression Analysis. StatPearls Publishing. Retrieved 9 6, 2025, from https://www.ncbi.nlm.nih.gov/sites/books/NBK606101/

Xie, M., Xie, L., & Zhu, P. (2021). An Efficient Feature Weighting Method for Support Vector Regression. Mathematical Problems in Engineering. doi:https://doi.org/10.1155/2021/6675218

Zhang, F., & O'Donnell, L. J. (2020). Chapter 7 - Support vector regression. In A. Mechelli, & S. Vieira, Machine Learning: Methods and Applications to Brain Disorders (pp. 123-140). London, United Kingdom: Elsevier & Academic Press. doi:https://doi.org/10.1016/B978-0-12-815739-8.00007-9

Zhou, W., Yan, Z., & Zhang, L. (2024). A comparative study of 11 non-linear regression models highlighting autoencoder, DBN, and SVR, enhanced by SHAP importance analysis in soybean branching prediction. Scientific Reports, 14. doi:https://doi.org/10.1038/s41598-024-55243-x

Downloads

Published

2025-09-25

How to Cite

Suyono, A. A. (2025). A Comparison of Polynomial Regression and Support Vector Regression for Predicting the Consumer Price Index Based on Food Commodity Prices in East Java, Indonesia. Journal of Information Technology and Cyber Security, 3(2), 95–113. https://doi.org/10.30996/jitcs.12353

Issue

Section

Research Article