A Comparison of Polynomial Regression and Support Vector Regression for Predicting the Consumer Price Index Based on Food Commodity Prices in East Java, Indonesia
DOI:
https://doi.org/10.30996/jitcs.12353Keywords:
Consumer Price Index, food commodities, Pearson Correlation Coefficient, Polynomial Regression, Radial Basis Function, Support Vector RegressionAbstract
Food price fluctuations occur almost daily and directly affect purchasing power as well as the stability of regional and national economies. As one of the largest provinces in Indonesia, East Java, which significantly contributes to national GDP, has diverse economic structures and highly sensitive to price changes. Given this situation, government needs more accurate prediction methods to monitor Consumer Price Index (CPI) movement as a basis for establishing more appropriate economic strategy and policy. This study aims to compare the performance of Polynomial Regression (PR) and Support Vector Regression (SVR) in predicting CPI using food price data from SISKAPERBAPO for the 2014 - 2020 period, covering regencies and cities in East Java. To ensure the quality of the analysis, missing values were removed. A Pearson’s r correlation analysis was then conducted to assess the relationships between food prices and CPI. The model obtained was then evaluated using mean squared error (MSE), root mean square error (RMSE), Mean absolute percentage error (MAPE), and computation time. The results shows that third order PR achieved higher accuracy with MAPE of 0.3% (training) and 3.4% (testing), while SVR performed lower with MAPE of 5.9% (training) and 6.0% (testing). In addition, PR was more computationally efficient than SVR. These findings underscore PR as a more reliable method for predicting CPI using complex regional food data.
Downloads
References
Aida, N. R., & Nugroho, R. S. (2022, 3 1). Update Harga Pangan 1 Maret 2022: Telur, Cabai, Minyak Goreng hingga Gula Pasir Naik. Retrieved 8 21, 2025, from Kompas.com: https://www.kompas.com/tren/read/2022/03/01/143000165/update-harga-pangan-1-maret-2022--telur-cabai-minyak-goreng-hingga-gula
Altair RapidMiner. (2025, 9 5). Polynomial Regression (AI Studio Core). Retrieved from Altair RapidMiner: https://docs.rapidminer.com/2024.0/studio/operators/modeling/predictive/functions/polynomial_regression.html
Ashoka, D. V., Rekha, P. M., & Sudha, P. R. (2024). Smart Power Management in Data Centers Using Machine-Learning Techniques. In R. Nagarajan, S. K. Narayanasamy, R. Thirunavukarasu, & P. Raj, Intelligent Systems and Sustainable Computational Models: Concepts, Architecture, and Practical Applications (pp. 1-13). New York, US: CRC Press. doi:https://doi.org/10.1201/9781003407959
Asmaradana, A. A., & Widodo, E. (2023). Penerapan Metode Peramalan Double Exponential Smoothing pada Indeks Harga Konsumen Kota Yogyakarta. Emerging Statistics and Data Science Journal (ESDS)., 1(1), 30-36. Retrieved 8 24, 2025, from https://journal.uii.ac.id/esds/article/download/27021/14715/84183
Badan Pusat Statistik. (2020). Indeks Harga Konsumen di 82 Kota di Indonesia (2012=100) 2019. Jakarta, Indonesia: Badan Pusat Statistik. Retrieved 9 5, 2025, from https://www.bps.go.id/id/publication/2020/04/09/91a62fdd238c2b440752e161/indeks-harga-konsumen-di-82-kota-di-indonesia--2012-100--2019.html
Badan Pusat Statistik. (2024). Diagram Timbang Indeks Harga Konsumen Hasil Survei Biaya Hidup 2022 (Vol. 8). Jakarta, Indonesia: Badan Pusat Statistik. Retrieved 9 5, 2025, from https://www.bps.go.id/id/publication/2024/02/05/f164320774fe896914f6fe1e/diagram-timbang-indeks-harga-konsumen-hasil-survei-biaya-hidup-2022.html
Bewick, V., Cheek, L., & Ball, J. (2003). Statistics review 7: Correlation and regression. Critical Care: Sepsis and Severe Infection, 7(6), 451–459. doi:https://doi.org/10.1186/cc2401
BPS Provinsi Jawa Timur. (2021). Indeks Harga Konsumen 8 Kota di Provinsi Jawa Timur 2020. Surabaya: BPS Provinsi Jawa Timur. Retrieved 8 24, 2025, from https://jatim.bps.go.id/id/publication/2021/04/23/4932c8cfa622e3c2618e04d8/indeks-harga-konsumen-8-kota-di-provinsi-jawa-timur-2020.html
BPS Provinsi Jawa Timur. (2024, 5 2). April 2024 inflasi Year on Year (y-on-y) Provinsi Jawa Timur sebesar 3,25 persen. Inflasi tertinggi terjadi di Sumenep sebesar 4,87 persen. Retrieved from Badan Pusat Statistik Provinsi Jawa Timur: https://jatim.bps.go.id/id/pressrelease/2024/05/02/1405/april-2024-inflasi-year-on-year--y-on-y--provinsi-jawa-timur-sebesar-3-25-persen--inflasi-tertinggi-terjadi-di-sumenep-sebesar-4-87-persen-.html
Budiastuti, I. A., Nugroho, S. M., & Hariadi, M. (2017). Predicting daily consumer price index using support vector regression method. 2017 15th International Conference on Quality in Research (QiR) : International Symposium on Electrical and Computer Engineering. Nusa Dua, Bali, Indonesia: IEEE. doi:https://doi.org/10.1109/QIR.2017.8168445
Bukaita, W., Celis, G. G., & Gurram, M. (2024). Training-Testing Data Ratio Selection for Accurate Time Series Forecasting: A COVID-19 Case Study. Proceedings of the Future Technologies Conference (FTC) 2024. 3, pp. 227–246. Springer. doi:https://doi.org/10.1007/978-3-031-73125-9_14
Chang, P.-C., Wang, Y.-W., & Liu, C.-H. (2007). The development of a weighted evolving fuzzy neural network for PCB sales forecasting. Expert Systems with Applications, 32(1), 86-96. doi:https://doi.org/10.1016/j.eswa.2005.11.021
Chen, J.-F., Do, Q. H., Nguyen, T. V., & Doan, T. T. (2018). Forecasting Monthly Electricity Demands by Wavelet Neuro-Fuzzy System Optimized by Heuristic Algorithms. Information, 9(3). doi:https://doi.org/10.3390/info9030051
Cybellium. (2023). Mastering Probability and Statistics: A Comprehensive Guide to Learn Probability and Statistics. Cybellium.
Delmo, J. A., Villarica, M. V., & Vinluan, A. A. (2022). Classification of Coffee Variety using Electronic Nose. 2022 IEEE 18th International Colloquium on Signal Processing & Applications (CSPA). 18, pp. 248-253. Selangor, Malaysia: IEEE. doi:https://doi.org/10.1109/CSPA55076.2022.9782056
Editya, A. S., Kurniati, N., Septianto, T., Lisdiyanto, A., & Al Haromainy, M. M. (2021). Effect of Kernel in Support Vector Regression Method to Predict Surabaya Consumer Price Index Trend. 2021 IEEE 5th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE). Purwokerto, Indonesia: IEEE. doi:https://doi.org/10.1109/ICITISEE53823.2021.9655891
Geetha, A. V., Mala, T., Priyanka, D., & Uma, E. (2024). Multimodal Emotion Recognition with Deep Learning: Advancements, challenges, and future directions. Information Fusion, 105. doi:https://doi.org/10.1016/j.inffus.2023.102218
Gogtay, N. J., & Thatte, U. (2017). Principles of Correlation Analysis. Journal of The Association of Physicians of India, 65(3), 78-81. Retrieved from https://www.kem.edu/wp-content/uploads/2012/06/9-Principles_of_correlation-1.pdf
Haoyuan, S., Yizhong, M., Chenglong, L., Jian, Z., & Lijun, L. (2023). Hierarchical Bayesian support vector regression with model parameter calibration for reliability modeling and prediction. Reliability Engineering & System Safety, 229. doi:https://doi.org/10.1016/j.ress.2022.108842
Hinkle, D. E., Wiersma, W., & Jurs, S. G. (2003). Applied statistics for the behavioral sciences. Houghton Mifflin. Retrieved 9 6, 2025, from https://library.wur.nl/WebQuery/titel/1944963
Hsia, J.-Y., & Lin, C.-J. (2020). Parameter Selection for Linear Support Vector Regression. IEEE Transactions on Neural Networks and Learning Systems, 31(12), 5639-5644. doi:https://doi.org/10.1109/TNNLS.2020.2967637
Joseph, V. R. (2022). Optimal ratio for data splitting. Statistical Analysis and Data Mining: An ASA Data Science Journal, 15(4), 531-538. doi:https://doi.org/10.1002/sam.11583
Kumar, S., & Chong, I. (2018). Correlation Analysis to Identify the Effective Data in Machine Learning: Prediction of Depressive Disorder and Emotion States. International Journal of Environmental Research and Public Health, 15(12), 2907. doi:https://doi.org/10.3390/ijerph15122907
Ladjal, B., Nadour, M., Bechouat, M., Hadroug, N., Sedraoui, M., Rabehi, A., . . . Agajie, T. F. (2025). Hybrid deep learning CNN-LSTM model for forecasting direct normal irradiance: a study on solar potential in Ghardaia, Algeria. Scientific Reports, 15. doi:https://doi.org/10.1038/s41598-025-94239-z
Larasati, R., Susilorini, T. E., Surjowardojo, P., & Wahyuni, R. D. (2024). Correlation of Linear Body Size With Body Condition Score and Body Weight of Participated Cow Used in the Progeny Test in East Java. Animal Production : Indonesian Journal of Animal Production, 26(2), 70-81. doi:https://doi.org/10.20884/1.jap.2024.26.2.298
Marsh, L. C., & Cormier, D. R. (2001). Spline Regression Models. Sage.
Mata, D. A., & Milner, D. A. (2021). Statistical Methods in Experimental Pathology: A Review and Primer. The American Journal of Pathology, 191(5), 784-794. doi:https://doi.org/10.1016/j.ajpath.2021.02.009
Mukaka, M. M. (2012). A guide to appropriate use of Correlation coefficient in medical research. Malawi Medical Journal, 24(3), 69–71. Retrieved 9 6, 2025, from https://pmc.ncbi.nlm.nih.gov/articles/PMC3576830/
Myśliwiec, P., Szawara, P., Kubit, A., Zwolak, M., Ostrowski, R., Derazkola, H. A., & Jurczak, W. (2025). FSW Optimization: Prediction Using Polynomial Regression and Optimization with Hill-Climbing Method. Materials, 18(2), 448. doi:https://doi.org/10.3390/ma18020448
Ostertagová, E. (2012). Modelling using Polynomial Regression. Procedia Engineering, 48, 500-506. doi:https://doi.org/10.1016/j.proeng.2012.09.545
Park, K., Rothfeder, R., Petheram, S., Buaku, F., Ewing, R., & Greene, W. H. (2020). Linear Regression. In Basic Quantitative Research Methods for Urban Planners. Taylor & Francis.
Prakoso, B. H. (2019). Implementasi Support Vector Regression pada Prediksi Inflasi Indeks Harga Konsumen. Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer, 19(1), 155-162. doi:https://doi.org/10.30812/matrik.v19i1.511
Pramesti, S. A., Sadikin, U. A., Imro'ah, N., & Maulida, F. (2023). Prediksi Indeks Harga Konsumen Kota Pontianak Menggunakan Metode Double Exponential Smoothing dan Analysis Trend. Equator: Journal of Mathematical and Statistical Sciences, 2(2), 37-47. Retrieved 8 24, 2025, from https://jurnal.untan.ac.id/index.php/EMSS/article/view/73302
Putranto, B. P., Kholik, M. A., Nugroho, M. A., & Kriestanto, D. (2023). Polynomial Regression Method and Support Vector Machine Method for Predicting Disease Covid-19 in Indonesia. Journal of Intelligent Software System, 2(1), 18-23. doi:http://dx.doi.org/10.26798/jiss.v2i1.931
R, I., Sudarmin, S., & Rais, Z. (2022). Analisis Support Vector Regression (SVR) dengan Kernel Radial Basis Function (Rbf) untuk Memprediksi Laju Inflasi di Indonesia. Variansi: Journal of Statistics and Its Application on Teaching and Research, 4(1), 30-38. Retrieved 8 24, 2025, from https://jurnalvariansi.unm.ac.id/index.php/variansi/article/view/13
Rahmadi, D. R. (2018, 5 7). Lessons dari Jawa Timur. Retrieved 8 21, 2025, from Fakultas Ekonomi dan Bisnis Universitas Brawijaya: https://feb.ub.ac.id/lessons-dari-jawa-timur/
Rahmawati, R. (2020). Implementasi Algoritme Support Vector Regression dan Particle Swarm Optimization dalam Peramalan Penjualan. Bandung, Indonesia: Sekolah Tinggi Manajemen Informatika dan Komputer LIKMI. Retrieved 8 24, 2025, from https://library.likmi.ac.id/book/109
Rohmah, M. F., Ardiantoro, L., Putra, I. K., & Hartati, R. S. (2019). Meramal Indeks Harga Konsumen Kabupaten di Jawa Timur dengan Metode Support Vector Regression Data Mining. Seminar Nasional Aplikasi Teknologi Informasi (SNATi) (pp. C-30 – C-36). Yogyakarta, Indonesia: Universitas Islam Indonesia. Retrieved 8 24, 2025, from https://journal.uii.ac.id/Snati/article/view/13434
Salkind, N. J. (2010). Statistics for People who (think They) Hate Statistics: Excel 2007 Edition. SAGE Publications.
Sari, D. N., Sasmito, B., & Hadi, F. (2023). Estimasi Produktivitas Kopi Menggunakan Citra SPOT-7 Dengan Transformasi Indeks Vegetasi. Jurnal Geodesi Undip (JGU), 12(1), 20-29. Retrieved 8 24, 2025, from https://ejournal3.undip.ac.id/index.php/geodesi/article/view/36910
Sari, L. P., Muslihah, M., Mutohari, R., & Sari, R. N. (2025). Dampak Krisis Keuangan Global Terhadap Pertumbuhan Ekonomi di Indonesia. Moneter: Jurnal Ekonomi dan Keuangan, 3(1), 90-103. doi:https://doi.org/10.61132/moneter.v3i1.1094
Singh, U., Singh, S., Gupta, S., Alotaibi, M. A., & Malik, H. (2025). Forecasting rooftop photovoltaic solar power using machine learning techniques. Energy Reports, 13, 3616-3630. doi:https://doi.org/10.1016/j.egyr.2025.03.005
Soyer, P. (2017). Misuse of semantics and basic statistical terms in original articles. Diagnostic and Interventional Imaging, 98(12), 825-826. doi:https://doi.org/10.1016/j.diii.2017.11.006
Vanitha, G., & Kasthuri, M. (2024). Basic Guide for Machine Learning Algorithms and Models. Madurai, India: SK Research Group of Companies.
Wisniewski, S. J., & Brannan, G. D. (2024). Correlation (Coefficient, Partial, and Spearman Rank) and Regression Analysis. StatPearls Publishing. Retrieved 9 6, 2025, from https://www.ncbi.nlm.nih.gov/sites/books/NBK606101/
Xie, M., Xie, L., & Zhu, P. (2021). An Efficient Feature Weighting Method for Support Vector Regression. Mathematical Problems in Engineering. doi:https://doi.org/10.1155/2021/6675218
Zhang, F., & O'Donnell, L. J. (2020). Chapter 7 - Support vector regression. In A. Mechelli, & S. Vieira, Machine Learning: Methods and Applications to Brain Disorders (pp. 123-140). London, United Kingdom: Elsevier & Academic Press. doi:https://doi.org/10.1016/B978-0-12-815739-8.00007-9
Zhou, W., Yan, Z., & Zhang, L. (2024). A comparative study of 11 non-linear regression models highlighting autoencoder, DBN, and SVR, enhanced by SHAP importance analysis in soybean branching prediction. Scientific Reports, 14. doi:https://doi.org/10.1038/s41598-024-55243-x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 The Author(s)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Notice based on COPE (Committee on Publication Ethics) for JITCS: Journal of Information Technology and Cyber Security
-
Ownership and Copyright:
- JITCS: Journal of Information Technology and Cyber Security respects the intellectual property rights of authors. The copyright for individual articles published in JITCS is retained by the respective authors, unless otherwise specified.
- The articles published in JITCS are licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial, and no modifications or adaptations are made.
- JITCS serves as the initial publisher of the articles, providing them with the first publication platform.
-
Permissions and Usage:
- Distribution for Non-Commercial Purposes: Permitted: Users are allowed to distribute the article for non-commercial purposes, provided the original work is properly cited and no modifications or adaptations are made.
- Distribution for Commercial Purposes: Not Permitted: The article may not be distributed for any commercial purposes without obtaining prior written permission from the author(s).
- Inclusion in a Collective Work (e.g., Anthology) for Non-Commercial Purposes: Permitted: Users are allowed to include the article in a collective work, such as an anthology, as long as the use is non-commercial and the work remains unchanged.
- Inclusion in a Collective Work for Commercial Purposes: Not Permitted: The article may not be included in any collective work or anthology intended for commercial purposes without prior permission from the author(s).
- Creation and Distribution of Revised Versions, Adaptations, or Derivative Works (e.g., Translation) for Non-Commercial Purposes: Not Permitted: Users may not create or distribute revised versions, adaptations, or derivative works, including translations, for non-commercial purposes.
- Creation and Distribution of Revised Versions, Adaptations, or Derivative Works for Commercial Purposes: Not Permitted: Users may not create or distribute revised versions, adaptations, or derivative works, including translations, for commercial purposes.
- Text or Data Mining for Non-Commercial Purposes: Permitted: Users are permitted to engage in text or data mining of the article for non-commercial research purposes, provided the original work is properly attributed.
- Text or Data Mining for Commercial Purposes: Not Permitted: Users may not engage in text or data mining of the article for commercial purposes without obtaining explicit permission from the author(s).
-
Attribution and Citation:
- Proper attribution and citation of the published work should be provided when using or referring to content from JITCS. This includes clearly indicating the authors, the title of the article, the journal name (JITCS), the volume/issue number, the publication year, and the article's DOI (Digital Object Identifier) when available.
- When adapting or modifying the published content, proper attribution to the original source should be given, and the adapted or modified content should be shared under the same CC BY-NC-ND 4.0 license.
-
Plagiarism and Copyright Infringement:
- JITCS considers plagiarism and copyright infringement as serious ethical violations. Authors are responsible for ensuring that their submitted work is original and does not infringe upon the copyright or intellectual property rights of others.
- Any allegations of plagiarism or copyright infringement will be investigated promptly and thoroughly. If proven, appropriate actions, including rejection of the manuscript, retraction of the published article, or other corrective measures, will be taken.
-
Open Access Licensing:
- JITCS supports open access publishing and encourages authors to consider publishing their work under the CC BY-NC-ND 4.0 license to promote the dissemination and use of knowledge in the field of information technology and cyber security.
- The specific terms and conditions of the CC BY-NC-ND 4.0 license will be clearly indicated on the published articles.
-
Policy Review: This Copyright Notice will be periodically reviewed and updated to ensure its continued relevance and compliance with copyright laws, ethical standards, and open access principles in scholarly publishing. Any updates or revisions to the notice will be communicated to the relevant stakeholders.
By adhering to this Copyright Notice, JITCS aims to protect the rights of authors, promote proper attribution and citation practices, and facilitate the responsible and legal use of the published content in accordance with the CC BY-NC-ND 4.0 license.


