Classification of Volcanic Status Events Using Autocorrelation and Support Vector Machine Methods

Authors

  • Fridy Mandita Universitas 17 Agustus 1945 Surabaya
  • Muhammad Arif Fajriyansah Universitas 17 Agustus 1945 Surabaya

DOI:

https://doi.org/10.30996/jitcs.133023

Keywords:

autocorrelation, seismic signal classification, support vector machine, volcano

Abstract

Volcanic eruption disasters occur frequently in Indonesia due to the high density of active volcanoes, posing persistent risks to surrounding communities and infrastructure. Effective mitigation of these hazards is challenged by limitations in monitoring systems, particularly related to instrumentation coverage and the availability of expert human resources. One critical aspect of volcanic monitoring is the accurate classification of seismic activity, which reflects subsurface volcanic processes and supports timely hazard assessment. This study addresses the challenge of reliably classifying volcanic seismic events by proposing an integrated framework that combines autocorrelation-based signal characterization with Support Vector Machine (SVM)–based multi-class classification, supported by Z-score normalization during data preprocessing. The framework is designed to enhance feature consistency and robustness against noise commonly present in volcanic seismic signals. To evaluate its effectiveness, three SVM kernel functions—linear, polynomial, and radial basis function (RBF)—are systematically assessed under identical experimental conditions. The results demonstrate that the polynomial SVM kernel with a degree of two provides the most reliable classification performance, achieving an accuracy of 0.9605. In addition, the application of Z-score normalization substantially improves model stability and overall performance across all kernel configurations, indicating that feature scaling plays a critical role in SVM-based seismic classification. Performance variations among kernels suggest that non-linear feature representations are better suited to capture the complex characteristics of volcanic seismic signals, while classification errors are primarily influenced by class imbalance in underrepresented event types. These findings indicate that the proposed framework effectively supports automated volcanic seismic signal analysis and has the potential to enhance the reliability of seismic-based volcanic activity monitoring.

Downloads

Download data is not yet available.

Author Biographies

Fridy Mandita, Universitas 17 Agustus 1945 Surabaya

Department of Robotics and Artificial Intelligence

Muhammad Arif Fajriyansah, Universitas 17 Agustus 1945 Surabaya

Department of Informatics Engineering

References

Alzubi, J., Nayyar, A., & Kumar, A. (2018). Machine Learning from Theory to Algorithms: An Overview. Journal of Physics: Conference Series, 1142. doi:https://doi.org/10.1088/1742-6596/1142/1/012012

Ambarwari, A., Adrian, Q. J., & Herdiyeni, Y. (2020). Analysis of the Effect of Data Scaling on the Performance of the Machine Learning Algorithm for Plant Identification. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(1), 117-122. doi:https://doi.org/10.29207/resti.v4i1.1517

Anggian, F. C., Hidayat, N., & Furqon, M. T. (2020). Implementasi Metode Modified K-Nearest Neighbor untuk Klasifikasi Status Gunung Berapi. JPTIIK (Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer), 3(12), 11027-11033. Retrieved January 29, 2026, from https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/6843

Bergen, K. J., Johnson, P. A., Hoop, M. V., & Beroza, G. C. (2019). Machine learning for data-driven discovery in solid Earth geoscience. Science, 363(6433). doi:https://doi.org/10.1126/science.aau0323

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York: Springer.

Chouet, B. A., & Matoza, R. S. (2013). A multi-decadal view of seismic methods for detecting precursors of magma movement and eruption. Journal of Volcanology and Geothermal Research, 252, 108-175. doi:https://doi.org/10.1016/j.jvolgeores.2012.11.013

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning(20), 273–297. doi:https://doi.org/10.1007/BF00994018

Gibbons, S. J., & Ringdal, F. (2006). The detection of low magnitude seismic events using array-based waveform correlation. Geophysical Journal International, 165(1), 149–1667. doi:https://doi.org/10.1111/j.1365-246X.2006.02865.x

Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques. Morgan Kaufmann.

Handayanto, A., Latifa, K., Saputro, N. D., & Waliyansyah, R. R. (2019). Analisis dan Penerapan Algoritma Support Vector Machine (SVM) dalam Data Mining untuk Menunjang Strategi Promosi. JUITA: Jurnal Informatika, 7(2), 71–79. doi:https://doi.org/10.30595/juita.v7i2.4378

Karo, I. M., & Hendriyana, H. (2022). Klasifikasi Penderita Diabetes menggunakan Algoritma Machine Learning dan Z-Score. Jurnal Teknologi Terpadu, 8(2), 94–99. doi:https://doi.org/10.54914/jtt.v8i2.564

Lara-Cueva, R., Benítez, D. S., Paillacho, V., Villalva, M., & Rojo-Álvarez, J. L. (2018). On the use of multi-class support vector machines for classification of seismic signals at Cotopaxi volcano. 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC). Ixtapa, Mexico: IEEE. doi:https://doi.org/10.1109/ROPEC.2017.8261613

Malfante, M., Mura, M. D., Mars, J. I., Métaxian, J.-P., Macedo, O., & Inza, A. (2018). Automatic Classification of Volcano Seismic Signatures. Journal of Geophysical Research: Solid Earth, 123(12), 10,645-10,658. doi:https://doi.org/10.1029/2018JB015470

Manley, G. F., Mather, T. A., Pyle, D. M., Clifton, D. A., Rodgers, M., Thompson, G., & Londo, J. M. (2022). A Deep Active Learning Approach to the Automatic Classification of Volcano-Seismic Events. Frontiers in Earth Science, 10. doi: https://doi.org/10.3389/feart.2022.807926

Marzocchi, W., Selva, J., & Jordan, T. H. (2021). A unified probabilistic framework for volcanic hazard and eruption forecasting. Natural Hazards and Earth System Sciences, 21(11), 3509–3517. doi:https://doi.org/10.5194/nhess-21-3509-2021

McNutt, S. R. (2025). Volcanic seismology. Annual Review of Earth and Planetary Sciences, 33, 461-491. doi:https://doi.org/10.1146/annurev.earth.33.092203.122459

Meier, M.-A., Ross, Z. E., Ramachandran, A., Balakrishna, A., Nair, S., Kundzicz, P., . . . Yue, Y. (2019). Reliable Real-Time Seismic Signal/Noise Discrimination With Machine Learning. Journal of Geophysical Research: Solid Earth, 124(1), 788-800. doi:https://doi.org/10.1029/2018JB016661

Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature Communications, 11. doi:https://doi.org/10.1038/s41467-020-17591-w

Perdana, R. S., Fatichah, C., & Purwitasari, D. (2015). Pemilihan Kata Kunciuntuk Deteksi Kejadian Trivial pada Dokumen Twitter Menggunakan Autocorrelation Wavelet Coefficients. JUTI: Jurnal Ilmiah Teknologi Informasi, 13(2), 152–159. doi:https://doi.org/10.12962/j24068535.v13i2.a484

Rahutomo, F., Saputra, P. Y., & Fidyawan, M. A. (2018). Implementasi Twitter Sentiment Analysis untuk Review Film Menggunakan Algoritma Support Vector Machine. Jurnal Informatika Polinema, 4(2), 93-100. doi:https://doi.org/10.33795/jip.v4i2.152

Ririh, K. R., Laili, N., Wicaksono, A., & Tsurayya, S. (2020). Studi Komparasi dan Analisis Swot pada Implementasi Kecerdasan Buatan (Artificial Intelligence) di Indonesia. J@ti Undip: Jurnal Teknik Industri, 15(2), 122-133. Retrieved January 28, 2026, from https://ejournal.undip.ac.id/index.php/jgti/article/view/29183

Ross, Z. E., Meier, M.‐A., Hauksson, E., & Heaton, T. H. (2018). Generalized Seismic Phase Detection with Deep Learning. Bulletin of the Seismological Society of America, 108(5A)), 2894–2901. doi:https://doi.org/10.1785/0120180080

Schölkopf, B., & Smola, A. J. (2001). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press.

Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97. doi:https://doi.org/10.1016/j.asoc.2019.105524

Tang, L., Zhang, M., & Wen, L. (2020). Support Vector Machine Classification of Seismic Events in the Tianshan Orogenic Belt. Journal of Geophysical Research: Solid Earth, 125(1). doi:https://doi.org/10.1029/2019JB018132

Tempola, F., Muhammad, M., & Khairan, A. (2018). Comparison of Classification between KNN and Naive Bayes at the Determination of the Volcanic Status with k-Kold Cross Validation. Jurnal Teknologi Informasi dan Ilmu Komputer, 5(5), 577-584. doi:https://doi.org/10.25126/jtiik.201855983

Thelen, W. A., Matoza, R. S., & Hotovec-Ellis, A. J. (2022). Trends in volcano seismology: 2010 to 2020 and beyond. Bulletin of Volcanology, 84. doi:https://doi.org/10.1007/s00445-022-01530-2

Titos, M., Bueno, A., García, L., Benítez, M. C., & Ibañez, J. (2019). Detection and Classification of Continuous Volcano-Seismic Signals With Recurrent Neural Networks. IEEE Transactions on Geoscience and Remote Sensing, 57(4), 1936-1948. doi:https://doi.org/10.1109/TGRS.2018.2870202

Vapnik, V. N. (1998). Statistical Learning Theory. John Wiley & Sons.

Downloads

Published

2026-02-02

How to Cite

Mandita, F., & Fajriyansah, M. A. (2026). Classification of Volcanic Status Events Using Autocorrelation and Support Vector Machine Methods. Journal of Information Technology and Cyber Security, 4(1), 26–40. https://doi.org/10.30996/jitcs.133023

Issue

Section

Research Article