Research Study of Water Cementitious Factor in Fly Ash (Coal) Based Geopolymer Concrete Based on Compressive Strength
DOI:
https://doi.org/10.30996/jspts.v6i2.132743Keywords:
geopolymer concrete, water cementitious, alkaline activatorAbstract
Fly ash based geopolymer concrete is an environmentally friendly alternative that can replace conventional Portland cement based concrete. This study aims to analyze the effect of the water cementitious (W/C) ratio on the compressive strength of Type C fly ash based geopolymer concrete from the Paiton Power Plant, as well as to determine the correlation between the water cementitious ratio and the concrete's compressive strength. The variations of the water cementitious ratio used were 0,35, 0,4, 0,45, 0,5, 0,55, 0,6, and 0,65. The alkaline activator used consisted of 8 M potassium hydroxide (KOH) and sodium silicate (Na₂SiO₃) with a ratio of 3:1. The test specimens, in the form of concrete cylinders (Ø15 cm × 30 cm), were tested at the ages of 3 and 7 days using the room temperature curing method. The results show that the compressive strength of the geopolymer concrete decreases with the increase of the water cementitious (W/C) ratio. At 3 days, the highest compressive strength of 28,42 MPa was achieved at a W/C of 0,35, while the lowest was 17,94 MPa at a W/C of 0,65. At 7 days, the highest compressive strength reached 37,13 MPa (W/C 0,35) and the lowest was 23,89 MPa (W/C 0,65). The concrete slump value increased with the increase in the W/C ratio, with the highest value of 18,4 cm at a W/C of 0,65. The test results conclude that the water cementitious (W/C) ratios of 0,35, 0,4, 0,45, 0,5, 0,55, 0,6, and 0,65 have a significant effect on the compressive strength of geopolymer concrete, where a higher water cementitious (W/C) ratio results in lower compressive strength.
Downloads
References
Anonim SNI 03-2847-2002, A. S. (2002). Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung. SNI 03-2847-2002. Bandung: Badan Standardisasi Nasional, 251.
Anonim SNI 1969:2008, A. S. (2008). SNI 1969:2008 Cara Uji Berat Jenis dan Penyerapan Air Agregat Kasar. Badan Standar Nasional Indonesia, 20.
Anonim SNI 1970:2008. (2008). Cara Uji Berat Jenis dan Penyerapan Air Agregat Halus. Badan Standar Nasional Indonesia, 7–18.
Anonim SNI 1971:2011. (2011). “Cara uji kadar air total agregat dengan pengeringan.” Badan Standarisasi Nasional, 1–11.
Anonim SNI 2417 - 2008. (2008). Cara uji keausan agregat dengan mesin abrasi Los Angeles. Badan Standarisasi Nasional, Jakarta. Badan Standardisasi Nasional, 1–20.
Ash, F. (2024). Studi Penelitian Faktor Air Cementitious ( W / C ) 0 , 35 – 0 , 65 Pada Beton Geopolimer Berbasis Fly Ash ( Batu Bara ) Berdasarkan. X(X), 1–10.
Cheng, T. W., & Chiu, J. P. (2003). Fire-resistant geopolymer produced by granulated blast furnace slag. Minerals Engineering, 16(3), 205–210.
Cioffi, R., Maffucci, L., & Santoro, L. (2003). Optimization of geopolymer synthesis by calcination and polycondensation of a kaolinitic residue. Resources, Conservation and Recycling, 40(1), 27–38.
Cioffi, R., Maffucci, L., & Santoro, L. (2003). Optimization of geopolymer synthesis by calcination and polycondensation of a kaolinitic residue. Resources, Conservation and Recycling, 40(1), 27–38.
Criado, M., Palomo, A., & Fernández-Jiménez, A. (2005). Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products. Fuel, 84(16), 2048–2054.
Davidovits, J. (1994). Properties of Geopolymer Cements. First International Conference on Alkaline Cements and Concretes, 131–149.
Davidovits, J. (2011). Application of Ca-based geopolymer with blast furnace slag , a review. Proceeding of the Second International Slag Valorisation Symposium, April 2011, 33–49.
Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & Van Deventer, J. S. J. (2007). Geopolymer technology: The current state of the art. Journal of Materials Science, 42(9), 2917–2933.
Ekaputri, J. J., & Triwulan, T. (2013). Sodium sebagai Aktivator Fly Ash, Trass dan Lumpur Sidoarjo dalam Beton Geopolimer. Jurnal Teknik Sipil, 20(1), 1.
Fajri, F. M., & Sumabrata, R. J. (2017). Pemanfaatan Abu Terbang (Fly-Ash) Dan Silica Fume Sebagai Bahan Utama Geopolimer Alternatif Pengganti Semen Tradisional (Opc). Prosiding Simposium II -UNIID 2017, 1978(September), 450–456.
Joseph, D. (2008). Geopolymer CHemistry and Applications, 5th edition. In J. Davidovits.–Saint-Quentin, France (Vol. 1, Issue January 2008).
Kong, D. L. Y., Sanjayan, J. G., & Sagoe-Crentsil, K. (2007). Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cement and Concrete Research, 37(12), 1583–1589.
Lloyd, N. A., & Rangan, B. V. (2010). Geopolymer concrete with fly ash. 2nd International Conference on Sustainable Construction Materials and Technologies, January 2010, 1493–1504.
Mathofani, A., Priskasari, I. E., & Aditama, V. (2019). Pengaruh Penggunaan Abu Ampas Tebu Dan Silica Fume Terhadap Kekuatan Beton Geopolimer Berbasis Fly Ash. Student Journal GELAGAR, X(X), 1–8.
Olivia, M. (2015). Geopolimer Sebagai Material Infrastruktur Berkelanjutan Di Lingkungan Gambut. Annual Civil Engineering Seminar, 1(1), 6.
Phair, J. W., & Van Deventer, J. S. J. (2001). Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers. Minerals Engineering, 14(3), 289–304.
Phair, J. W., & Van Deventer, J. S. J. (2002). Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers. International Journal of Mineral Processing, 66(1–4), 121–143.
Provis, J. L., & van Deventer, J. S. J. (2007). Geopolymerisation kinetics. 2. Reaction kinetic modelling. Chemical Engineering Science, 62(9), 2318–2329.
Setiawati, M. (2018). Fly Ash Sebagai Bahan Pengganti Semen Pada Beton. Seminar Nasional Sains Dan Teknologi 2018 , 1–8.
Siyal, A. A., Azizli, K. A., Man, Z., Ismail, L., & Khan, M. I. (2016). Geopolymerization kinetics of fly ash based geopolymers using JMAK model. Ceramics International, 42(14), 15575–15584.
Szecsy, R. (2006). Using high-volume fly ash concrete. Concrete Construction - World of Concrete, 51(1), 73–82.
Turner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125–130.
Yuanda, D., Fadli, A., Program, M., Teknik, S., Jurusan, D., Kimia, T., Teknik, F., & Riau, U. (2013). Pemanfaatan Limbah Abu Terbang ( Fly Ash ) Batubara Sebagai Bahan Pembuatan Beton Geopolimer. 1–7.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jurnal Spesialis Teknik Sipil (JSpTS)

This work is licensed under a Creative Commons Attribution 4.0 International License.





