Employee Face Recognition Using You Only Look Once version 5 (YOLOv5): A Case Study at a Transportation-Based University in Indonesia
Abstract
In 2020, Politeknik Perkerapian Indonesia Madiun (PPI Madiun) faced significant challenges due to the COVID-19 pandemic, which led to the implementation of both Work from Office (WFO) and Work From Home (WFH) policies. To support these policies, PPI Madiun utilized the Electronic Attendance and Remote Assignment Monitoring System (SKEMA RAJA) provided by the Indonesian Ministry of Transportation. However, this system lacked an integrated facial recognition feature to ensure the accuracy of attendance data. Facial recognition technology presents a viable solution to enhance the reliability and efficiency of this attendance system. One effective technology for face recognition is You Only Look Once version 5 (YOLOv5), which has been proven to detect objects with high speed and accuracy. This study aims to develop a face recognition system for PPI Madiun employees using YOLOv5. The results demonstrate that YOLOv5 can detect faces from multiple angles—including right, left, top, bottom, and front—with 100% accuracy under optimal conditions. Additionally, YOLOv5 successfully detects faces in real-time from varying distances (10 cm, 20 cm, and 30 cm), achieving 80% accuracy. The system's performance is influenced by factors such as the angle of capture, lighting conditions, and facial expressions.
Downloads
References
Alwi, M. D., Pradjojowaty, I. S., & Arifianto, T. (2024). Penerapan Algoritma You Only Look Once (Yolo) untuk Mendeteksi Sarana Perkeretaapian. SPIRIT, 16(2), 280-291. doi:http://dx.doi.org/10.53567/spirit.v16i2.342
Chanda, S., Kumar, Y. N., Srivastava, S., Rani, R., Shree, M., & Mohapatra, A. K. (2024). Optimizing facial feature extraction and localization using YOLOv5: An empirical analysis of backbone architectures with data augmentation for precise facial region detection. Multimedia Tools and Applications, 83, 73627–73648. doi:https://doi.org/10.1007/s11042-024-19284-8
Chen, W., Li, Y., Tian, Z., & Zhang, F. (2023). 2D and 3D object detection algorithms from images: A Survey. Array, 19. doi:https://doi.org/10.1016/j.array.2023.100305
Dompeipen, T. A., Sompie, S. R., & Najoan, M. E. (2021). Computer Vision Implementation for Detection and Counting the Number of Humans. Jurnal Teknik Informatika, 6(1), 65-76. Retrieved from https://ejournal.unsrat.ac.id/v3/index.php/informatika/article/view/31471
Farokhah, L. (2021). Perbandingan Metode Deteksi Wajah Menggunakan OpenCV Haar Cascade, OpenCV Single Shot Multibox Detector (SSD) dan DLib CNN. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 5(3), 609-614. doi:https://doi.org/10.29207/resti.v5i3.3125
Fu’adi, A., Prianggono, A., Putra, B. J., & Hikmawan, B. (2024). Pembangunan Sistem Monitoring Kehadiran Mahasiswa Menggunakan Yolo Pendeteksi Obyek dan Pengenal Wajah Opencv. Jurnal Ilmiah Teknologi Informasi Asia, 18(1), 84-87. Retrieved from https://jurnal.asia.ac.id/index.php/jitika/article/view/999
Geraldy, C., & Lubis, C. (2020). Pendeteksian dan Pengenalan Jenis Mobil Menggunakan Algoritma You Only Look Once dan Convolutional Neural Network. JIKSI (Jurnal Ilmu Komputer dan Sistem Informasi), 8(2), 197-199. doi:https://doi.org/10.24912/jiksi.v8i2.11495
Golasangi, A., Choudri, M., Bulla, P., & Devaraddi, V. (2024). A Survey on Face Recognition Based Attendance System. International Journal of Research in Engineering, Science and Management, 7(2), 15-18. Retrieved from https://journal.ijresm.com/index.php/ijresm/article/view/2931
Hanum, M. (2024). Implementasi Teknik Embossing pada Pengenalan Plat Kendaraan untuk Identifikasi Otomatis Berbasis OpenCV. JoMMiT : Jurnal Multi Media dan IT, 8(1), 62-68. doi:https://doi.org/10.46961/jommit.v8i1.1361
Hassaballah, M., Bekhet, S., Rashed, A. A., & Zhang, G. (2019). Facial Features Detection and Localization. In M. Hassaballah, & K. M. Hosny, Recent Advances in Computer Vision: Theories and Applications. Springer. doi:https://doi.org/10.1007/978-3-030-03000-1_2
Hoo, S. C., & Ibrahim, H. (2019). Biometric-Based Attendance Tracking System for Education Sectors: A Literature Survey on Hardware Requirements. Journal of Sensors. doi:https://doi.org/10.1155/2019/7410478
Irfansyah, F. D., Kusuma, N. P., Renaldi, R. P., & Rosyani, P. (2024). Perancangan Pendeteksi Objek Menggunakan Metode YOLO Dan OpenCV. Jurnal Artificial Inteligent dan Sistem Penunjang Keputusan, 2(1), 43-47. Retrieved from http://jurnalmahasiswa.com/index.php/aidanspk/article/view/1491
Ismail, A., Elpeltagy, M., Zaki, M., & ElDahshan, K. A. (2021). Deepfake video detection: YOLO-Face convolution recurrent approach. PeerJ Computer Science, 7. doi:https://doi.org/10.7717/peerj-cs.730
Jocher, G., Changyu, L., Hogan, A., Yu, L., changyu98, Rai, P., & Sullivan, T. (2020, June 25). ultralytics/yolov5: Initial Release. Retrieved from Zenodo: https://zenodo.org/records/3908560
Kementerian Perhubungan RI. (2020). Buku Panduan Penggunaan Aplikasi SKEMA RAJA Sistem Kehadiran Elektronik dan Monitoring Penugasan Jarak Jauh Kementerian Perhubungan. Jakarta, Indonesia: Kementerian Perhubungan RI. Retrieved from https://id.scribd.com/document/454242757/SKEMA-RAJA-Buku-Panduan
Kementerian Perhubungan RI. (2020, 03 30). Surat Edaran Nomor: SE. 5 Tahun 2020 tentang Penggunaan Sistem Kehadiran Elektronik dan Monitoring Penugasan Jarak Jauh (SKEMA RAJA) di Lingkungan Kementerian Perhubungan. Jakarta, Indonesia.
Liu, L., Wang, G., & Miao, Q. (2024). ADYOLOv5-Face: An Enhanced YOLO-Based Face Detector for Small Target Faces. Electronics, 13(21). doi:https://doi.org/10.3390/electronics13214184
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg., A. C. (2016). SSD: Single Shot MultiBox Detector. ECCV: European Conference on Computer Vision. 9905. Amsterdam, Netherlands: Springer. doi:https://doi.org/10.1007/978-3-319-46448-0_2
Mamieva, D., Abdusalomov, A. B., Mukhiddinov, M., & Whangbo, T. K. (2023). Improved Face Detection Method via Learning Small Faces on Hard Images Based on a Deep Learning Approach. Sensors, 23(1), 52. doi:https://doi.org/10.3390/s23010502
Mardiana, M., Muhammad, M. A., & Mulyani, Y. (2021). Library Attendance System using YOLOv5 Faces Recognition. 2021 International Conference on Converging Technology in Electrical and Information Engineering (ICCTEIE) (pp. 68-72). Bandar Lampung, Indonesia: IEEE. doi:https://doi.org/10.1109/ICCTEIE54047.2021.9650628
Premaratne, P., Kadhim, I. J., Blacklidge, R., & Lee, M. (2023). Comprehensive review on vehicle Detection, classification and counting on highways. Neurocomputing, 556. doi:https://doi.org/10.1016/j.neucom.2023.126627
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 779-788). Las Vegas, NV, USA: IEEE. doi:https://doi.org/10.1109/CVPR.2016.91
Saponara, S., Elhanashi, A., & Zheng, Q. (2022). Developing a real-time social distancing detection system based on YOLOv4-tiny and bird-eye view for COVID-19. Journal of Real-Time Image Processing, 19, 551–563. doi:https://doi.org/10.1007/s11554-022-01203-5
Sari, D. P., & Mirza, A. H. (2022). The Detection of Face Recognition as Employee Attendance Presence Using the YOLO Algorithm (You Only Look Once). Jurnal Darma Agung, 30(3), 41-50. doi:http://dx.doi.org/10.46930/ojsuda.v30i3.2187
Sukusvieri, A. (2020). Implementasi Metode Single Shot Detector (SSD) untuk Pengenalan Wajah. Surabaya, Indonesia: Universitas Dinamika. Retrieved from https://repository.dinamika.ac.id/id/eprint/4215/
Sutisna, T., Raharja, A. R., Solihin, S., Hariyadi, E., & Putra, V. H. (2024). Penggunaan Computer Vision untuk Menghitung Jumlah Kendaraan dengan Menggunakan Metode SSD (Single Shoot Detector). Innovative: Journal of Social Science Research, 4(2), 6060-6067. Retrieved from https://j-innovative.org/index.php/Innovative/article/view/10071
Talamoa, A. J., Nur, M. D., & Hartati, H. (2024). Kehadiran Kecerdasan Buatan Google Bard Anugerah atau Bencana bagi Dunia Pendidikan. Prosiding Kajian Islam dan Integrasi Ilmu di Era Society 5.0. 3, pp. 288-293. Palu, Indonesia: Universitas Islam Negeri Datokarama Palu. Retrieved from https://jurnal.uindatokarama.ac.id/index.php/kiiies50/article/view/3251
Tian, M., & Liao, Z. (2021). Research on Flower Image Classification Method Based on YOLOv5. Journal of Physics: Conference Series, 2024. doi:https://doi.org/10.1088/1742-6596/2024/1/012022
Virgiawan, I., Maulana, F., Putra, M. A., Kurnia, D. D., & Sinduningrum, E. (2024). Deteksi dan Tracking Objek Secara Real-Time Berbasis Computer Vision Menggunakan Metode YOLO V3. Jurnal Ilmiah Multidisiplin Indonesia, 3(3). Retrieved from https://journal.ikopin.ac.id/index.php/humantech/article/view/4348
Wagh, P., Thakare, R., Chaudhari, J., & Patil, S. (2015). Attendance system based on face recognition using eigen face and PCA algorithms Publisher: IEEE Cite This PDF. 2015 International Conference on Green Computing and Internet of Things (ICGCIoT) (pp. 303-308). Greater Noida, India: IEEE. doi:https://doi.org/10.1109/ICGCIoT.2015.7380478
Wasril, A. R., Ghozali, M. S., & Mustafa, M. B. (2019). Pembuatan Pendeteksi Obyek dengan Metode You Only Look Once (YOLO) untuk Automated Teller Machine (ATM). Majalah Ilmiah Unikom, 7(1), 69-76. doi:https://doi.org/10.34010/miu.v17i1.2240
Zhang, Z., Wang, W., An, A., Qin, Y., & Yang, F. (2023). A human activity recognition method using wearable sensors based on convtransformer model. Evolving Systems, 14, 939–955. doi:https://doi.org/10.1007/s12530-022-09480-y
Copyright (c) 2025 The Authors

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Notice based on COPE (Committee on Publication Ethics) for JITCS: Journal of Information Technology and Cyber Security
-
Ownership and Copyright:
- JITCS: Journal of Information Technology and Cyber Security respects the intellectual property rights of authors. The copyright for individual articles published in JITCS is retained by the respective authors, unless otherwise specified.
- The articles published in JITCS are licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial, and no modifications or adaptations are made.
- JITCS serves as the initial publisher of the articles, providing them with the first publication platform.
-
Permissions and Usage:
- Distribution for Non-Commercial Purposes: Permitted: Users are allowed to distribute the article for non-commercial purposes, provided the original work is properly cited and no modifications or adaptations are made.
- Distribution for Commercial Purposes: Not Permitted: The article may not be distributed for any commercial purposes without obtaining prior written permission from the author(s).
- Inclusion in a Collective Work (e.g., Anthology) for Non-Commercial Purposes: Permitted: Users are allowed to include the article in a collective work, such as an anthology, as long as the use is non-commercial and the work remains unchanged.
- Inclusion in a Collective Work for Commercial Purposes: Not Permitted: The article may not be included in any collective work or anthology intended for commercial purposes without prior permission from the author(s).
- Creation and Distribution of Revised Versions, Adaptations, or Derivative Works (e.g., Translation) for Non-Commercial Purposes: Not Permitted: Users may not create or distribute revised versions, adaptations, or derivative works, including translations, for non-commercial purposes.
- Creation and Distribution of Revised Versions, Adaptations, or Derivative Works for Commercial Purposes: Not Permitted: Users may not create or distribute revised versions, adaptations, or derivative works, including translations, for commercial purposes.
- Text or Data Mining for Non-Commercial Purposes: Permitted: Users are permitted to engage in text or data mining of the article for non-commercial research purposes, provided the original work is properly attributed.
- Text or Data Mining for Commercial Purposes: Not Permitted: Users may not engage in text or data mining of the article for commercial purposes without obtaining explicit permission from the author(s).
-
Attribution and Citation:
- Proper attribution and citation of the published work should be provided when using or referring to content from JITCS. This includes clearly indicating the authors, the title of the article, the journal name (JITCS), the volume/issue number, the publication year, and the article's DOI (Digital Object Identifier) when available.
- When adapting or modifying the published content, proper attribution to the original source should be given, and the adapted or modified content should be shared under the same CC BY-NC-ND 4.0 license.
-
Plagiarism and Copyright Infringement:
- JITCS considers plagiarism and copyright infringement as serious ethical violations. Authors are responsible for ensuring that their submitted work is original and does not infringe upon the copyright or intellectual property rights of others.
- Any allegations of plagiarism or copyright infringement will be investigated promptly and thoroughly. If proven, appropriate actions, including rejection of the manuscript, retraction of the published article, or other corrective measures, will be taken.
-
Open Access Licensing:
- JITCS supports open access publishing and encourages authors to consider publishing their work under the CC BY-NC-ND 4.0 license to promote the dissemination and use of knowledge in the field of information technology and cyber security.
- The specific terms and conditions of the CC BY-NC-ND 4.0 license will be clearly indicated on the published articles.
-
Policy Review: This Copyright Notice will be periodically reviewed and updated to ensure its continued relevance and compliance with copyright laws, ethical standards, and open access principles in scholarly publishing. Any updates or revisions to the notice will be communicated to the relevant stakeholders.
By adhering to this Copyright Notice, JITCS aims to protect the rights of authors, promote proper attribution and citation practices, and facilitate the responsible and legal use of the published content in accordance with the CC BY-NC-ND 4.0 license.