Employee Face Recognition Using You Only Look Once version 5 (YOLOv5): A Case Study at a Transportation-Based University in Indonesia

Keywords: attendance system, face recognition, YOLOv5, You Only Look Once

Abstract

In 2020, Politeknik Perkerapian Indonesia Madiun (PPI Madiun) faced significant challenges due to the COVID-19 pandemic, which led to the implementation of both Work from Office (WFO) and Work From Home (WFH) policies. To support these policies, PPI Madiun utilized the Electronic Attendance and Remote Assignment Monitoring System (SKEMA RAJA) provided by the Indonesian Ministry of Transportation. However, this system lacked an integrated facial recognition feature to ensure the accuracy of attendance data. Facial recognition technology presents a viable solution to enhance the reliability and efficiency of this attendance system. One effective technology for face recognition is You Only Look Once version 5 (YOLOv5), which has been proven to detect objects with high speed and accuracy. This study aims to develop a face recognition system for PPI Madiun employees using YOLOv5. The results demonstrate that YOLOv5 can detect faces from multiple angles—including right, left, top, bottom, and front—with 100% accuracy under optimal conditions. Additionally, YOLOv5 successfully detects faces in real-time from varying distances (10 cm, 20 cm, and 30 cm), achieving 80% accuracy. The system's performance is influenced by factors such as the angle of capture, lighting conditions, and facial expressions.

Downloads

Download data is not yet available.

Author Biographies

Sunaryo Sunaryo, Politeknik Perkeretaapian Indonesia Madiun

Department of Railway Electrical Technology

Teguh Arifianto, Politeknik Perkeretaapian Indonesia Madiun

Department of Railway Electrical Technology

Muhammad Afif Amalul Arifidin, Politeknik Perkeretaapian Indonesia Madiun

Department of Railway Electrical Technology

References

Alwi, M. D., Pradjojowaty, I. S., & Arifianto, T. (2024). Penerapan Algoritma You Only Look Once (Yolo) untuk Mendeteksi Sarana Perkeretaapian. SPIRIT, 16(2), 280-291. doi:http://dx.doi.org/10.53567/spirit.v16i2.342

Chanda, S., Kumar, Y. N., Srivastava, S., Rani, R., Shree, M., & Mohapatra, A. K. (2024). Optimizing facial feature extraction and localization using YOLOv5: An empirical analysis of backbone architectures with data augmentation for precise facial region detection. Multimedia Tools and Applications, 83, 73627–73648. doi:https://doi.org/10.1007/s11042-024-19284-8

Chen, W., Li, Y., Tian, Z., & Zhang, F. (2023). 2D and 3D object detection algorithms from images: A Survey. Array, 19. doi:https://doi.org/10.1016/j.array.2023.100305

Dompeipen, T. A., Sompie, S. R., & Najoan, M. E. (2021). Computer Vision Implementation for Detection and Counting the Number of Humans. Jurnal Teknik Informatika, 6(1), 65-76. Retrieved from https://ejournal.unsrat.ac.id/v3/index.php/informatika/article/view/31471

Farokhah, L. (2021). Perbandingan Metode Deteksi Wajah Menggunakan OpenCV Haar Cascade, OpenCV Single Shot Multibox Detector (SSD) dan DLib CNN. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 5(3), 609-614. doi:https://doi.org/10.29207/resti.v5i3.3125

Fu’adi, A., Prianggono, A., Putra, B. J., & Hikmawan, B. (2024). Pembangunan Sistem Monitoring Kehadiran Mahasiswa Menggunakan Yolo Pendeteksi Obyek dan Pengenal Wajah Opencv. Jurnal Ilmiah Teknologi Informasi Asia, 18(1), 84-87. Retrieved from https://jurnal.asia.ac.id/index.php/jitika/article/view/999

Geraldy, C., & Lubis, C. (2020). Pendeteksian dan Pengenalan Jenis Mobil Menggunakan Algoritma You Only Look Once dan Convolutional Neural Network. JIKSI (Jurnal Ilmu Komputer dan Sistem Informasi), 8(2), 197-199. doi:https://doi.org/10.24912/jiksi.v8i2.11495

Golasangi, A., Choudri, M., Bulla, P., & Devaraddi, V. (2024). A Survey on Face Recognition Based Attendance System. International Journal of Research in Engineering, Science and Management, 7(2), 15-18. Retrieved from https://journal.ijresm.com/index.php/ijresm/article/view/2931

Hanum, M. (2024). Implementasi Teknik Embossing pada Pengenalan Plat Kendaraan untuk Identifikasi Otomatis Berbasis OpenCV. JoMMiT : Jurnal Multi Media dan IT, 8(1), 62-68. doi:https://doi.org/10.46961/jommit.v8i1.1361

Hassaballah, M., Bekhet, S., Rashed, A. A., & Zhang, G. (2019). Facial Features Detection and Localization. In M. Hassaballah, & K. M. Hosny, Recent Advances in Computer Vision: Theories and Applications. Springer. doi:https://doi.org/10.1007/978-3-030-03000-1_2

Hoo, S. C., & Ibrahim, H. (2019). Biometric-Based Attendance Tracking System for Education Sectors: A Literature Survey on Hardware Requirements. Journal of Sensors. doi:https://doi.org/10.1155/2019/7410478

Irfansyah, F. D., Kusuma, N. P., Renaldi, R. P., & Rosyani, P. (2024). Perancangan Pendeteksi Objek Menggunakan Metode YOLO Dan OpenCV. Jurnal Artificial Inteligent dan Sistem Penunjang Keputusan, 2(1), 43-47. Retrieved from http://jurnalmahasiswa.com/index.php/aidanspk/article/view/1491

Ismail, A., Elpeltagy, M., Zaki, M., & ElDahshan, K. A. (2021). Deepfake video detection: YOLO-Face convolution recurrent approach. PeerJ Computer Science, 7. doi:https://doi.org/10.7717/peerj-cs.730

Jocher, G., Changyu, L., Hogan, A., Yu, L., changyu98, Rai, P., & Sullivan, T. (2020, June 25). ultralytics/yolov5: Initial Release. Retrieved from Zenodo: https://zenodo.org/records/3908560

Kementerian Perhubungan RI. (2020). Buku Panduan Penggunaan Aplikasi SKEMA RAJA Sistem Kehadiran Elektronik dan Monitoring Penugasan Jarak Jauh Kementerian Perhubungan. Jakarta, Indonesia: Kementerian Perhubungan RI. Retrieved from https://id.scribd.com/document/454242757/SKEMA-RAJA-Buku-Panduan

Kementerian Perhubungan RI. (2020, 03 30). Surat Edaran Nomor: SE. 5 Tahun 2020 tentang Penggunaan Sistem Kehadiran Elektronik dan Monitoring Penugasan Jarak Jauh (SKEMA RAJA) di Lingkungan Kementerian Perhubungan. Jakarta, Indonesia.

Liu, L., Wang, G., & Miao, Q. (2024). ADYOLOv5-Face: An Enhanced YOLO-Based Face Detector for Small Target Faces. Electronics, 13(21). doi:https://doi.org/10.3390/electronics13214184

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg., A. C. (2016). SSD: Single Shot MultiBox Detector. ECCV: European Conference on Computer Vision. 9905. Amsterdam, Netherlands: Springer. doi:https://doi.org/10.1007/978-3-319-46448-0_2

Mamieva, D., Abdusalomov, A. B., Mukhiddinov, M., & Whangbo, T. K. (2023). Improved Face Detection Method via Learning Small Faces on Hard Images Based on a Deep Learning Approach. Sensors, 23(1), 52. doi:https://doi.org/10.3390/s23010502

Mardiana, M., Muhammad, M. A., & Mulyani, Y. (2021). Library Attendance System using YOLOv5 Faces Recognition. 2021 International Conference on Converging Technology in Electrical and Information Engineering (ICCTEIE) (pp. 68-72). Bandar Lampung, Indonesia: IEEE. doi:https://doi.org/10.1109/ICCTEIE54047.2021.9650628

Premaratne, P., Kadhim, I. J., Blacklidge, R., & Lee, M. (2023). Comprehensive review on vehicle Detection, classification and counting on highways. Neurocomputing, 556. doi:https://doi.org/10.1016/j.neucom.2023.126627

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 779-788). Las Vegas, NV, USA: IEEE. doi:https://doi.org/10.1109/CVPR.2016.91

Saponara, S., Elhanashi, A., & Zheng, Q. (2022). Developing a real-time social distancing detection system based on YOLOv4-tiny and bird-eye view for COVID-19. Journal of Real-Time Image Processing, 19, 551–563. doi:https://doi.org/10.1007/s11554-022-01203-5

Sari, D. P., & Mirza, A. H. (2022). The Detection of Face Recognition as Employee Attendance Presence Using the YOLO Algorithm (You Only Look Once). Jurnal Darma Agung, 30(3), 41-50. doi:http://dx.doi.org/10.46930/ojsuda.v30i3.2187

Sukusvieri, A. (2020). Implementasi Metode Single Shot Detector (SSD) untuk Pengenalan Wajah. Surabaya, Indonesia: Universitas Dinamika. Retrieved from https://repository.dinamika.ac.id/id/eprint/4215/

Sutisna, T., Raharja, A. R., Solihin, S., Hariyadi, E., & Putra, V. H. (2024). Penggunaan Computer Vision untuk Menghitung Jumlah Kendaraan dengan Menggunakan Metode SSD (Single Shoot Detector). Innovative: Journal of Social Science Research, 4(2), 6060-6067. Retrieved from https://j-innovative.org/index.php/Innovative/article/view/10071

Talamoa, A. J., Nur, M. D., & Hartati, H. (2024). Kehadiran Kecerdasan Buatan Google Bard Anugerah atau Bencana bagi Dunia Pendidikan. Prosiding Kajian Islam dan Integrasi Ilmu di Era Society 5.0. 3, pp. 288-293. Palu, Indonesia: Universitas Islam Negeri Datokarama Palu. Retrieved from https://jurnal.uindatokarama.ac.id/index.php/kiiies50/article/view/3251

Tian, M., & Liao, Z. (2021). Research on Flower Image Classification Method Based on YOLOv5. Journal of Physics: Conference Series, 2024. doi:https://doi.org/10.1088/1742-6596/2024/1/012022

Virgiawan, I., Maulana, F., Putra, M. A., Kurnia, D. D., & Sinduningrum, E. (2024). Deteksi dan Tracking Objek Secara Real-Time Berbasis Computer Vision Menggunakan Metode YOLO V3. Jurnal Ilmiah Multidisiplin Indonesia, 3(3). Retrieved from https://journal.ikopin.ac.id/index.php/humantech/article/view/4348

Wagh, P., Thakare, R., Chaudhari, J., & Patil, S. (2015). Attendance system based on face recognition using eigen face and PCA algorithms Publisher: IEEE Cite This PDF. 2015 International Conference on Green Computing and Internet of Things (ICGCIoT) (pp. 303-308). Greater Noida, India: IEEE. doi:https://doi.org/10.1109/ICGCIoT.2015.7380478

Wasril, A. R., Ghozali, M. S., & Mustafa, M. B. (2019). Pembuatan Pendeteksi Obyek dengan Metode You Only Look Once (YOLO) untuk Automated Teller Machine (ATM). Majalah Ilmiah Unikom, 7(1), 69-76. doi:https://doi.org/10.34010/miu.v17i1.2240

Zhang, Z., Wang, W., An, A., Qin, Y., & Yang, F. (2023). A human activity recognition method using wearable sensors based on convtransformer model. Evolving Systems, 14, 939–955. doi:https://doi.org/10.1007/s12530-022-09480-y

Published
2025-03-03
How to Cite
Sunaryo, S., Arifianto, T., & Arifidin, M. A. A. (2025). Employee Face Recognition Using You Only Look Once version 5 (YOLOv5): A Case Study at a Transportation-Based University in Indonesia. Journal of Information Technology and Cyber Security. https://doi.org/10.30996/jitcs.12278
Issue
Section
Research Article