Early Breast Cancer Detection Using Gabor Filter and Convolutional Neural Network for Microcalcification Identification

Authors

DOI:

https://doi.org/10.30996/jitcs.132037

Abstract

Breast cancer poses a considerable challenge in Indonesia, resulting in numerous fatalities. This study aims to improve the accuracy and efficiency of early breast cancer diagnosis by leveraging modern image processing and artificial intelligence. The dataset used is the Mini-DDSM (Mini Digital Database for Screening Mammography), taken from Kaggle and vetted by radiologists into a Region of Interest (ROI) consisting of three categories: Benign, Cancer, and Normal. The methodology encompasses comprehensive image preprocessing, which includes resizing, cropping, RGB-to-grayscale conversion, Laplacian of Gaussian (LoG) filtering, Gabor filtering, global threshold segmentation, and image enhancement. A Convolutional Neural Network (CNN) is employed for classification purposes. Ninety percent of the images are allocated for training, while 10% are designated for testing, with critical parameters such as learning rate, batch size, and epochs being tuned throughout the training process. The CNN architecture was assessed based on recognition rate, error rate, epoch count, and training duration. The results provide a flawless validation accuracy of 100% over 32 trials. The findings demonstrate that the suggested method markedly enhances early breast cancer identification using microcalcification analysis in mammography images, assisting medical professionals in early diagnosis and potentially elevating patient recovery rates through prompt detection and treatment.

Downloads

Download data is not yet available.

Author Biographies

Abdul Latief Mufti, Universitas Tanri Abeng

Department of Informatics Engineering

Adithya Kusuma Whardana, Universitas Tanri Abeng

Department of Informatics Engineering

References

Alfayat, M. P., & Whardana, A. K. (2024). Deteksi Dini Alzheimer pada Otak dengan Kombinasi Metode. Scan: Jurnal Teknologi Informasi dan Komunikasi, 19(1), 32-41. doi:https://doi.org/10.33005/scan.v19i1.4735

Al-masni, M. A., Al-antari, M. A., Park, J. M., Gi, G., Kim, T. Y., Rivera, P., . . . Kim, T.-S. (2017). Detection and classification of the breast abnormalities in digital mammograms via regional Convolutional Neural Network. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 39. Jeju, Korea (South): IEEE. doi:https://doi.org/10.1109/EMBC.2017.8037053

American Cancer Society. (2014). Cancer Facts & Figures 2014. Atlanta, Georgia, United States: American Cancer Society. Retrieved from https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2014/cancer-facts-and-figures-2014.pdf

Annisa, S., Lubis, Z., & Najmita, A. (2020). Perancangan Aplikasi Jaringan Syaraf Tiruan (Neural Networks) Untuk Pedeteksi Keaslian Uang Kertas. JET (Journal of Electrical Technology), 5(1), 1-8. Retrieved 9 23, 2025, from https://jurnal.uisu.ac.id/index.php/jet/article/view/2562

Basheer, N. M., & Mohammed, M. H. (2013). Segmentation of Breast Masses in Digital Mammograms Using Adaptive Median Filtering and Texture Analysis. International Journal of Recent Technology and Engineering (IJRTE), 2(1), 39-43. Retrieved 9 23, 2025, from https://www.researchgate.net/publication/326589085_Segmentation_of_Breast_Masses_in_Digital_Mammograms_Using_Adaptive_Median_Filtering_and_Texture_Analysis

Brahimetaj, R., Willekens, I., Massart, A., Forsyth, R., Cornelis, J., Mey, J. D., & Jansen, B. (2022). Improved automated early detection of breast cancer based on high resolution 3D micro-CT microcalcification images. BMC Cancer, 22. doi:https://doi.org/10.1186/s12885-021-09133-4

Brian, T. (2016). Analisis Learning Rates pada Algoritma Backpropagation untuk Klasifikasi Penyakit Diabetes. Jurnal Ilmiah Edutic: Pendidikan dan Informatika, 3(1), 21-27. doi:https://doi.org/10.21107/edutic.v3i1.2557

Cardona, H. D., Orozco, Á., & Álvarez, M. A. (2014). Automatic Recognition of Microcalcifications in Mammography Images through Fractal Texture Analysis. ISVC: International Symposium on Visual Computing. 8888. Las Vegas, NV, USA: Springer. doi:https://doi.org/10.1007/978-3-319-14364-4_81

Dyanti, G. A., & Suariyani, N. L. (2016). Faktor-Faktor Keterlambatan Penderita Kanker Payudara dalam Melakukan Pemeriksaan Awal ke Pelayanan Kesehatan. KEMAS: Jurnal Kesehatan Masyarakat, 11(2), 276-284. doi:https://doi.org/10.15294/kemas.v11i2.3742

Fadil, R., Jackson, A., Majd, B. A., Ghazi, H. E., & Kaabouch, N. (2019). Segmentation of Microcalcifications in Mammograms: A comparative Study. 2019 IEEE International Conference on Electro Information Technology (EIT). Brookings, SD, USA: IEEE. doi:https://doi.org/10.1109/EIT.2019.8833735

Fuadi, I. H. (2023, 11 21). 4 Perbedaan AI, Machine Learning, dan Deep Learning + Contoh. Retrieved 9 23, 2025, from Sanana Digital: https://sasanadigital.com/perbedaan-artificial-intelligence-machine-learning-dan-deep-learning-serta-contohnya/

Ghosal, S. K., Mandal, J. K., & Sarkar, R. (2018). High payload image steganography based on Laplacian of Gaussian (LoG) edge detector. Multimedia Tools and Applications, 77, 30403–30418. doi:https://doi.org/10.1007/s11042-018-6126-y

Gu, H., Wang, Y., Hong, S., & Gui, G. (2019). Blind Channel Identification Aided Generalized Automatic Modulation Recognition Based on Deep Learning. IEEE Access, 7, 110722-110729. doi:http://doi.org/10.1109/ACCESS.2019.2934354

Guo, Z., Xie, J., Wan, Y., Zhang, M., Qiao, L., Yu, J., . . . Yao, Y. (2022). A review of the current state of the computer-aided diagnosis (CAD) systems for breast cancer diagnosis. Open Life Sciences, 17(1), 1600-1611. doi:https://doi.org/10.1515/biol-2022-0517

Gupta, A., Anjum, A., Gupta, S., & Katarya, R. (2021). InstaCovNet-19: A deep learning classification model for the detection of COVID-19 patients using Chest X-ray. Applied Soft Computing, 99. doi:https://doi.org/10.1016/j.asoc.2020.106859

Guzmán-Cabrera, R., Guzmán-Sepúlveda, J. R., Torres-Cisneros, M., May-Arrioja, D. A., Ruiz-Pinales, J., Ibarra-Manzano, O. G., . . . Parada, A. G. (2013). Digital Image Processing Technique for Breast Cancer Detection. International Journal of Thermophysics, 34(8-9), 1519–1531. doi:https://doi.org/10.1007/s10765-012-1328-4

Houssein, E. H., Helmy, B. E.-d., Oliva, D., Elngar, A. A., & Shaban, H. (2021). Multi-level Thresholding Image Segmentation Based on Nature-Inspired Optimization Algorithms: A Comprehensive Review. In D. Oliva, E. H. Houssein, & S. Hinojosa, Metaheuristics in Machine Learning: Theory and Applications (Vol. 967). Springer. doi:https://doi.org/10.1007/978-3-030-70542-8_11

International Agency for Research. (2022). Indonesia. GLOBOCAN 2022. Retrieved 9 23, 2025, from https://gco.iarc.who.int/media/globocan/factsheets/populations/360-indonesia-fact-sheet.pdf

Iranmakani, S., Mortezazadeh, T., Sajadian, F., Ghaziani, M. F., Ghafari, A., Khezerloo, D., & Musa, A. E. (2020). A review of various modalities in breast imaging: technical aspects and clinical outcomes. Egyptian Journal of Radiology and Nuclear Medicine, 51. doi:https://doi.org/10.1186/s43055-020-00175-5

Iriyanto, S. Y., & Zaini, T. M. (2014). Pengolahan Citra Digital. Bandar Lampung, Indonesia: Anugrah Utama Raharja (AURA).

Jothiaruna, N., Sundar, K. J., & Ahmed, M. I. (2021). A disease spot segmentation method using comprehensive color feature with multi-resolution channel and region growing. Multimedia Tools and Applications, 80, 3327–3335. doi:https://doi.org/10.1007/s11042-020-09882-7

Kadir, A., Nugroho, L. E., Susanto, A., & Santosa, P. I. (2011). Foliage Plant Retrieval Using Polar Fourier Transform, Color Moments and Vein Features. Signal & Image Processing : An International Journal (SIPIJ), 2(3). doi:http://doi.org/10.5121/sipij.2011.2301

Kamil, M. Y. (2020). Computer-aided diagnosis system for breast cancer based on the Gabor filter technique. International Journal of Electrical and Computer Engineering, 10(5), 5235-5242. doi:http://doi.org/10.11591/ijece.v10i5.pp5235-5242

Khan, A., & Arora, A. S. (2019). Breast Cancer Detection Through Gabor Filter Based Texture Features Using Thermograms Images. 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC). 1. Jalandhar, India: IEEE. doi:https://doi.org/10.1109/ICSCCC.2018.8703342

Khoulqi, I., & Idrissi, N. (2020). Segmentation and Classification of Microcalcifications Using Digital Mammograms. The Proceedings of the 4th International Conference on Smart City Applications. 4, pp. 384–403. Casablanca, Morocco: Springer. doi:https://doi.org/10.1007/978-3-030-37629-1_29

Leong, Y. S., Hasikin, K., Lai, K. W., Zain, N. M., & Azizan, M. M. (2022). Microcalcification Discrimination in Mammography Using Deep Convolutional Neural Network: Towards Rapid and Early Breast Cancer Diagnosis. Frontiers in Public Health, 10. doi:https://www.frontiersin.org/journals/public-health/articles/10.3389/fpubh.2022.875305/full

Liew, X. Y., Hameed, N., & Clos, J. (2021). A Review of Computer-Aided Expert Systems for Breast Cancer Diagnosis. Cancers, 13(11). doi:https://doi.org/10.3390/cancers13112764

Logullo, A. F., Prigenzi, K. C., Nimir, C. C., Franco, A. F., & Campos, M. S. (2022). Breast microcalcifications: Past, present and future (Review). Molecular and Clinical Oncology, 16(4). doi:https://doi.org/10.3892/mco.2022.2514

Madhavi, M. V., & Bobby, T. C. (2019). Gabor Filter Based Classification of Mammography Images Using LS-SVM and Random Forest Classifier. Recent Trends in Image Processing and Pattern Recognition Second International Conference, RTIP2R 2018. 1036, pp. 69–83. Solapur, India: Springer. doi:https://doi.org/10.1007/978-981-13-9184-2_6

Mohimont, L., Alin, F., Rondeau, M., Gaveau, N., & Steffenel, L. A. (2022). Computer Vision and Deep Learning for Precision Viticulture. Agronomy, 12(10). doi:https://doi.org/10.3390/agronomy12102463

Moyya, P. D., & Asaithambi, M. (2022). Quantitative Analysis of Breast Cancer NACT Response on DCE-MRI Using Gabor Filter Derived Radiomic Features. International Journal of Online and Biomedical Engineering, 18(12), 106–122. doi:http://doi.org/10.3991/ijoe.v18i12.32501

Nagane, U. P., & Mulani, A. O. (2021). Moving Object Detection and Tracking Using Matlab. Journal of Science & Technology, 6(Special Issue 1), 63–66. Retrieved 9 23, 2025, from https://jst.org.in/index.php/pub/article/view/743

Narasimhaiah, P., & Nagaraju, C. (2023). Breast Cancer Screening Tool Using Gabor Filter-Based Ensemble Machine Learning Algorithms. International Journal of Intelligent Systems and Applications in Engineering, 11(2), 936–947. Retrieved 9 23, 2025, from https://ijisae.org/index.php/IJISAE/article/view/2972

Podgornova, Y. A., & Sadykov, S. S. (2019). Comparative analysis of segmentation algorithms for the allocation of microcalcifications on mammograms. International Conference on "Information Technology and Nanotechnology" (ITNT-2019). V. Samara, Russia: CEUR-WS.org. Retrieved 9 23, 2025, from https://ceur-ws.org/Vol-2391/paper17.pdf

Saifullah, S., Sunardi, S., & Yudhana, A. (2016). Analisis Perbandingan Pengolahan Citra Asli Dan Hasil Croping Untuk Identifikasi Telur. JuTISI (Jurnal Teknik Informatika dan Sistem Informasi) (e-Journal), 2(3), 341-350. Retrieved 9 23, 2025, from https://journal.maranatha.edu/index.php/jutisi/article/view/638

Salama, W. M., & Aly, M. H. (2021). Deep learning in mammography images segmentation and classification: Automated CNN approach. Alexandria Engineering Journal, 60(5), 4701-4709. doi:https://doi.org/10.1016/j.aej.2021.03.048

Sama, A. S., & Baneamoon, S. M. (2017). Breast Cancer Classification Enhancement Based on Entropy Method. International Journal of Engineering and Applied Computer Science (IJEACS), 2(8), 267-271. doi:http://doi.org/10.24032/ijeacs/0208/06

Sarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3). doi:https://doi.org/10.1007/s42979-021-00592-x

Singh, A. K., & Gupta, B. (2015). A Novel Approach for Breast Cancer Detection and Segmentation in a Mammogram. Procedia Computer Science, 54, 676-682. doi:https://doi.org/10.1016/j.procs.2015.06.079

Singh, G., & Goel, A. K. (2020). Face Detection and Recognition System using Digital Image Processing. 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). 2. Bangalore, India: IEEE. doi:https://doi.org/10.1109/ICIMIA48430.2020.9074838

Wang, K., Ye, Z., Xie, X., Cui, H., Chen, T., & Liu, B. (2024). MLN-net: A multi-source medical image segmentation method for clustered microcalcifications using multiple layer normalization. Knowledge-Based Systems, 283. doi:https://doi.org/10.1016/j.knosys.2023.111127

Whardana, A. K., & Putri, R. K. (2025). Comparative Evaluation of Supervised Learning Algorithms for Breast Cancer Classification. International Journal of Engineering and Manufacturing (IJEM), 15(4), 29-38. doi:https://doi.org/10.5815/ijem.2025.04.03

Whardana, A. K., Mufti, A. L., Hermawan, H., & Aziz, U. A. (2024). Classification Techniques in Finding Malignant Breast Cancer Detection. Journal of Information Technology and Cyber Security, 2(1), 40–50. doi:https://doi.org/10.30996/jitcs.8829

World Health Organization. (2022, February 4). Urgently address gaps in cancer care: WHO. Retrieved 9 23, 2025, from World Health Organization: https://www.who.int/southeastasia/news/detail/04-02-2022-urgently-address-gaps-in-cancer-care-who#:~:text=New%20Delhi%20%7C%204%20February%202022,people%20suffering%20from%20the%20disease.

Zamir, R., Bagon, S., Samocha, D., Yagil, Y., Basri, R., Sklair-Levy, M., & Galun, M. (2021). Segmenting microcalcifications in mammograms and its applications. Medical Imaging 2021: Image Processing. 11596, pp. 788-795. SPIE. doi:https://doi.org/10.1117/12.2580398

Zhang, C., & Lu, Y. (2021). Study on artificial intelligence: The state of the art and future prospects. Journal of Industrial Information Integration, 23. doi:https://doi.org/10.1016/j.jii.2021.100224

Zhao, J., Chen, T., & Cai, B. (2022). A computer-aided diagnostic system for mammograms based on YOLOv3. Multimedia Tools and Applications, 81(14), 19257–19281. doi:https://doi.org/10.1007/s11042-021-10505-y

Downloads

Published

2025-10-07

How to Cite

Mufti, A. L., & Whardana, A. K. (2025). Early Breast Cancer Detection Using Gabor Filter and Convolutional Neural Network for Microcalcification Identification. Journal of Information Technology and Cyber Security, 3(2), 128–146. https://doi.org/10.30996/jitcs.132037

Issue

Section

Research Article