Classification Techniques in Finding Malignant Breast Cancer Detection

Keywords: Breast Cancer research, Classification, CNN, Convolutional Neural Network, Digital Image Processing, Image Analysis

Abstract

The most fundamental aspect of cancer is that it is marked by abnormal and uncontrolled cell growth, allowing it to spread to the surrounding areas of existing tissues. One of the most common cancers experienced by people in Indonesia, according to the Indonesian Ministry of Health, is breast cancer. The diagnosis of diseases, especially cancer, also requires a visual form that is later used as an image to determine the condition within the patient's organs. The use of mammography images is one implementation of X-rays aimed at revealing the structure of human bones and tissues. The use of images is also recognized in information technology in the field of digital image processing, which is useful for analyzing, enhancing, compressing, and reconstructing images using a collection of computational techniques. One application of digital image processing techniques for breast mammography images is recognizing the possibility of breast cancer through computer automation using classification methods supported by googlepredict.net architectures. The results obtained in this study use a dataset sourced from King Abdul Aziz University, totaling 2378 images. The method used in this research is Convolutional Neural Network (CNN), with the addition of the GoogleNet architecture. The convolution extraction method runs with the GoogleNet architecture, enhancing deep learning for optimal breast cancer recognition. The overall results of this study found an average precision value of 90%, recall of 92%, F-1 Score of 91.49%, and accuracy of 91.49%.

Downloads

Download data is not yet available.

Author Biographies

Adithya Kusuma Whardana, Universitas Tanri Abeng

Department of Informatics Engineering

Abdul Latief Mufti, Universitas Tanri Abeng

Department of Informatics Engineering

Hendar Hermawan, Universitas Tanri Abeng

Department of Informatics Engineering

Umar Alfaruq Abdul Aziz, Universitas Tanri Abeng

Department of Informatics Engineering

References

American College of Radiology. (2014). 2013 ACR BI-RADS Atlas: Breast Imaging Reporting and Data System (C. J. D’Orsi, E. A. Sickles, E. B. Mendelson, & E. A. Morris (eds.)). American College of Radiology.

Anand, R., Shanthi, T., Nithish, M. S., & Lakshman, S. (2020). Face Recognition and Classification Using GoogleNET Architecture. Soft Computing for Problem Solving, 1048, 261–269. https://doi.org/10.1007/978-981-15-0035-0_20

Bi, N., Chen, J., & Tan, J. (2019). The Handwritten Chinese Character Recognition Uses Convolutional Neural Networks with the GoogLeNet. International Journal of Pattern Recognition and Artificial Intelligence, 33(11). https://doi.org/10.1142/S0218001419400160

Chauhan, R., Ghanshala, K. K., & Joshi, R. . (2018). Convolutional Neural Network (CNN) for Image Detection and Recognition. 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), 278–282. https://doi.org/10.1109/ICSCCC.2018.8703316

Dong, C., Loy, C. C., He, K., & Tang, X. (2016). Image Super-Resolution Using Deep Convolutional Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 295–307. https://doi.org/10.1109/TPAMI.2015.2439281

Dumoulin, V., & Visin, F. (2018). A guide to convolution arithmetic for deep learning.

Faizin, A., Lutfi, M., & Achmyatari, A. (2022). Perbandingan Arsitektur Lenet dan Googlenet dalam Klasifikasi Diabetic Retinopathy pada Citra Retina Fundus. JATI (Jurnal Mahasiswa Teknik Informatika), 6(1), 342–347. https://doi.org/10.36040/jati.v6i1.4581

Fattah, M. S. (2021). Deteksi penyakit pneumonia dan COVID-19 menggunakan citra x-ray dengan metode Convolutional Neural Network (CNN) model GoogleNet. http://digilib.uinsa.ac.id/49030/

Garga, D., & Verma, G. K. (2020). Emotion Recognition in Valence-Arousal Space from Multi-channel EEG data and Wavelet based Deep Learning Framework. Procedia Computer Science, 171, 857–867. https://doi.org/10.1016/j.procs.2020.04.093

Kalli, S., Semine, A., Cohen, S., Naber, S. P., Makim, S. S., & Bahl, M. (2018). American Joint Committee on Cancer’s Staging System for Breast Cancer, Eighth Edition: What the Radiologist Needs to Know. RadioGraphics, 38(7), 1921–1933. https://doi.org/10.1148/rg.2018180056

Kamencay, P., Benco, M., Mizdos, T., & Radil, R. (2017). A New Method for Face Recognition Using Convolutional Neural Network. Advances in Electrical and Electronic Engineering, 15(4), 663–672. https://doi.org/10.15598/aeee.v15i4.2389

Krishna, S. T., & Kalluri, H. K. (2019). Deep learning and transfer learning approaches for image classification. International Journal of Recent Technology and Engineering, 7(5S4), 427–432. https://www.ijrte.org/wp-content/uploads/papers/v7i5s4/E10900275S419.pdf

Lestandy, M., Abdurrahim, A., & Syafa’ah, L. (2021). Analisis Sentimen Tweet Vaksin COVID-19 Menggunakan Recurrent Neural Network dan Naïve Bayes. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(4), 802–808. https://doi.org/10.29207/resti.v5i4.3308

Ma, X., Yang, G., & Yang, Q. (2019). Application of Deep Convolution Neural Network in Automatic Classification of Land Use. Journal of Physics: Conference Series, 1187. https://doi.org/10.1088/1742-6596/1187/4/042104

Putra, W. S. E., Wijaya, A. Y., & Soelaiman, R. (2016). Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) pada Caltech 101. Jurnal Teknik ITS, 5(1), A65–A69. https://doi.org/10.12962/j23373539.v5i1.15696

Puttagunta, M. K., & Subban, R. (2021). Medical image analysis based on deep learning approach. Multimedia Tools and Applications, 80, 24365–24398. https://doi.org/10.1007/s11042-021-10707-4

Rokhana, R., Priambodo, J., Karlita, T., Sunarya, I. M. G., Yuniarno, E. M., Purnama, I. K. E., & Purnomo, M. H. (2019). Convolutional Neural Network untuk Pendeteksian Patah Tulang Femur pada Citra Ultrasonik B–Mode. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 8(1), 59–67. https://journal.ugm.ac.id/v3/JNTETI/article/view/2617

Sena, S. (2017). Pengenalan Deep Learning Part 7: Convolutional Neural Network (CNN). Medium. https://medium.com/@samuelsena/pengenalan-deep-learning-part-7-convolutional-neural-network-cnn-b003b477dc94

Shanthi, T., & Sabeenian, R. S. (2019). Modified Alexnet architecture for classification of diabetic retinopathy images. Computers and Electrical Engineering, 76, 56–64. https://doi.org/10.1016/j.compeleceng.2019.03.004

Spak, D. A., Plaxco, J. S., Santiago, L., Dryden, M. J., & Dogan, B. E. (2017). BI-RADS® fifth edition: A summary of changes. Diagnostic and Interventional Imaging, 98(3), 179–190. https://doi.org/10.1016/j.diii.2017.01.001

Sun, Y., Zhang, W., Gu, H., Liu, C., Hong, S., Xu, W., Yang, J., & Gui, G. (2019). Convolutional Neural Network Based Models for Improving Super-Resolution Imaging. IEEE Access, 7, 43042–43051. https://doi.org/10.1109/ACCESS.2019.2908501

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

Syafa’ah, L., & Lestandy, M. (2021). Penerapan Deep Learning untuk Prediksi Kasus Aktif COVID-19. J-SAKTI (Jurnal Sains Komputer Dan Informatika), 5(1), 453–457. http://ejurnal.tunasbangsa.ac.id/index.php/jsakti/article/view/337

Syafa’ah, L., Zulfatman, Z., Pakaya, I., & Lestandy, M. (2021). Comparison of Machine Learning Classification Methods in Hepatitis C Virus. JOIN (Jurnal Online Informatika), 6(1), 73–78. https://doi.org/10.15575/join.v6i1.719

Tobías, L., Ducournau, A., Rousseau, F., Mercier, G., & Fablet, R. (2016). Convolutional Neural Networks for object recognition on mobile devices: A case study. 2016 23rd International Conference on Pattern Recognition (ICPR), 3530–3535. https://doi.org/10.1109/ICPR.2016.7900181

Yuliastuti, F., Andayani, T. M., Endarti, D., & Kristina, S. A. (2023). Breast, cervical, and lung cancer: A comparison of real healthcare costs and INA-CBGs rates in the era of national health insurance. Pharmacy Practice, 21(1), 1–7. https://doi.org/10.18549/PharmPract.2023.1.2768

Zufar, M. (2016). Convolutional Neural Networks untuk Pengenalan Wajah Secara Real-Time. https://repository.its.ac.id/72552/

Published
2024-07-30
How to Cite
Whardana, A. K., Mufti, A. L., Hermawan, H., & Aziz, U. A. A. (2024). Classification Techniques in Finding Malignant Breast Cancer Detection. Journal of Information Technology and Cyber Security, 2(1), 40-50. https://doi.org/10.30996/jitcs.8829
Section
Research Article

Most read articles by the same author(s)